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1. Introduction

D3 branes living at the singularity of a Calabi-Yau cone have provided general and in-

teresting results for the AdS/CFT correspondence. The IR limit of the gauge theory on

the world volume of the D3-branes is dual to type IIB string theory on the near horizon

geometry AdS5 × H, where H is the Sasaki-Einstein base of the cone [1, 2]. The recent

growth in the number of explicit examples, with the study of the Y p,q and Lp,q,r mani-

folds [3 – 9], was accompanied by a deeper general understanding of the correspondence.

The AdS/CFT correspondence predicts a precise relation between the central charge a,

the scaling dimensions of some operators in the CFT and the volumes of H and of certain

submanifolds. Checks of this relation have been performed for the known examples of

Sasaki-Einstein metrics [6, 10 – 12, 7 – 9]. It is by now clear that all these checks can be

done without an explicit knowledge of the metric. a-maximization [13] provides an efficient

tool for computing central and R-charges on the quantum field theory side. On the other
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hand, volume minimization [14, 15] provides a geometrical method for extracting volumes

from the geometry without knowing the metric.

The cones C(H) admit a (C∗)r action with r = 1 or 2 or 3. We know that there is

always at least one C
∗ action. In all cones over Sasaki-Einstein manifolds, there is in fact

an isometry corresponding to the Reeb vector, the geometric dual of the R-symmetry. The

Reeb vector combines with the dilatation to give a C
∗ action. In general r can be bigger

giving rise to a bigger isometry group T r. The case r = 3 with isometry T 3 corresponds

to the toric case, which is well understood. The long standing problem of finding the

correspondence between toric singularities and quiver gauge theories has been completely

solved using dimer technology [16 – 18]. The brane tilings [16] provide an ingenious Hanany-

Witten construction of the dual gauge theory. Many invariants, like the number of gauge

groups or multiplicity of fields with given R charge, have simple expression in terms of

toric data [19, 7, 20, 17, 18]. It is also possible to provide a general formula for assigning

R-charges to the chiral fields of the quiver gauge theory [21]. Moreover, a general proof of

the equivalence between a-maximization and volume minimization for all toric singularities

has been given in [20]. Much less is known about the non toric case. In the case of (non-

abelian) orbifolds we can find the dual gauge theory by performing a projection, but for

more general non toric singularities not even simple invariants like the number of gauge

groups or chiral fields are known. In this paper we will focus on various examples non toric

manifolds with isometry T 2 and T 1 obtained by deforming the toric case.

In the first part of the paper we discuss in details the various ways of comparing

the spectrum of conformal dimensions of chiral operators predicted by the quantum field

theory with the information that can be extracted from supergravity. On the gravity side,

we can determine the spectrum of dimensions of mesons by analyzing the KK spectrum

of the compactification on H. Alternatively, we can extract the dimensions of baryons by

considering D3-branes wrapped on three cycles in H. To study mesons we need to compute

the spectrum of the scalar Laplacian on H while to study baryons we need to compute

volumes of three cycles in H. Both methods give a way of determining the R-charges of the

elementary fields in the gauge theory. The agreement of the two computations thus gives

an intriguing relation between three cycle volumes and eigenvalues of the Laplacian. In the

toric case, where everything is under control, we will show quite explicitly that this relation

is fulfilled. The proof becomes very simple when all the tools that can be used in the toric

case (the R-charge parametrization in terms of toric data and the Ψ-map for mesons) have

been introduced. It would be quite interesting to understand how the relation between

three cycles volumes and eigenvalues of the Laplacian can be generalized to the non toric

case, where the understanding of divisors on the cones C(H) is still lacking.

In the second part of this paper we will provide examples of non-toric T 2 and T 1 quiver

gauge theories. A convenient way of realizing a large class of such theories is the following.

We add to a quiver gauge theory dual to a toric geometry suitable superpotential

terms, keeping the same number of gauge groups and the same quiver diagram. The new

terms in the superpotential must be chosen in such a way to break one or both of the

two U(1)2 flavor symmetries of the original toric theory: they correspond therefore to a

relevant deformation of the superconformal toric theory which in the IR leads generically
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to a new surface of superconformal fixed points, characterized by different values for the

central charge a and for the scaling dimensions of chiral fields. All conformal gauge theories

with a three dimensional moduli space of vacua and with a supergravity dual are described

by Calabi-Yau and thus the dual background is AdS5 × H with H Sasaki-Einstein.1 Our

strategy for producing new examples of non toric quiver gauge theories will be as following:

in the family of relevant deformations of a toric case that lead to IR fixed points we will

select those cases where the moduli space is three dimensional. We will provide examples

based on delPezzo cones, Generalized Conifolds, Y p,q and Lp,q,r manifolds. We will also

show that this procedure is quite general: given a large class of toric quiver theories we can

choose relevant deformations that lead to examples of non toric manifolds with T 2 or T 1

isometry. The dual gauge theory has the same quiver than the original theory but differs

in the superpotential terms.2 We will give a complete characterization of this particular

class of T 2 and T 1 theories and we will compute central and R-charges and characters by

adapting toric methods. The Calabi-Yau corresponding to the new IR fixed points can be

written as a system of algebraic equations using mesonic variables. We in general obtain a

non complete intersection variety. We can confirm that the manifold is indeed a Calabi-Yau

by comparing the volume extracted from the character (under the assumption of dealing

with a Sasaki-Einstein base) with the result of a-maximization.

There are various differences between theories with different number of isometries

which we will encounter in our analysis. These differences are particularly manifest in

spectrum of chiral mesons. The chiral ring can be mapped to the cone of holomorphic

functions on C(H). The partition function (or character) counting chiral mesons with given

U(1)r charge contains several information about the dual gauge theory. In particular, as

shown in [15], the volume of H as a function of the Reeb vector can be extracted from the

character. We can then perform volume minimization, whose details depend on the value

of r. The minimization is done on two parameters in the toric case but it is done on zero

parameters - so it is not even a minimization anymore - in the case of T 1. As a result the

central charge of T 1 cases is always rational.3 The spectrum of dimensions of the chiral

mesons of the dual gauge theory is also sensitive to the number of isometries. In fact, there

is a simple formula

∆ =

r
∑

i=1

bimi

1We thank A. Tomasiello for an enlightening discussion on this point. The supergravity description of

the new quiver gauge theory can be realized in terms of a new Sasaki-Einstein manifold H , which is our

interest in this paper, or more generally in terms of warped AdS5 backgrounds with non vanishing three

form fluxes. Generic relevant deformations, which reduce the dimension of the moduli space of vacua of

the gauge theory, are typically described by an AdS5 background with three-form flux. Conformal theories

with three dimensional moduli space are instead necessarily of Calabi-Yau type. This observation is based

on the analysis of the supersymmetry conditions for supergravity solution with fluxes [23 – 26]. See section

4 for more details.
2Obviously, this means that we are not considering the most general non toric theory.
3This statement has a counterpart in a-maximization. In fact one can eliminate the baryonic symmetries

from the process of a-maximization using linear equations [20]. The number of free parameters is then equal

to the number of flavor symmetries which is r − 1, reducing to zero for r = 1.
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that expresses the dimension of a meson in terms of its integer charges mi under the U(1)r

torus and the components of the Reeb vector bi in the same basis. In the toric case, the

cone of holomorphic functions is given by the dual of the fan, C∗, and there is exactly

one holomorphic function for each point in C∗ [22]. The character can be evaluated as

discussed in [15]. In the T 1 case, instead, it follows from the relation between dimension

and Reeb that all the dimensions of mesons are integer multiples of a given quantity. The

cone of holomorphic functions in this case is just an half-line, with multiplicities typically

greater than one. The intermediate case r = 2 has some interesting features since the cone

of holomorphic functions has dimension greater than one and there is at least one flavor

symmetry requiring Z-minimization.

The paper is organized as follows. In section 2 we review the description of mesons in

terms of KK modes and holomorphic functions. We also derive a useful formula relating

the dimensions of mesons to the Reeb vector. In section 3 we compare, in the toric case, the

spectrum of conformal dimensions of chiral operators that can be extracted from mesons

and from baryons. In section 4 we describe the general method for obtaining non toric

theories with T 2 or T 1 isometry by deforming toric ones. In section 5 we discuss in all

details the case of quivers associated to cones over the delPezzo manifold dP4, the blow-

up of P2 at four points. When the four points are in specific positions we obtain the

toric model PdP4. This can be deformed both to a T 2 and a T 1 theory by changing

the superpotential.4 In section 6 and 7 we provide other examples based on Generalized

Conifolds, Y p,q and Lp,q,r manifolds and we will argue that this procedure for obtaining non

toric examples is quite general. In section 8 we generalized our proof of the equivalence

between a-maximization and Z-minimization to these more general theories. Finally, in

appendix A we review the basic facts about the toric case and in appendix B we collect

some technical details of the moduli space analysis.

2. The spectrum of chiral mesons

In this section we discuss the dual description of mesons of a quiver gauge theory in

terms of holomorphic functions on the Calabi-Yau and we give useful formulae for their

dimensions. We review this description in the following, collecting various arguments that

have appeared elsewhere in the literature. A similar point of view was taken in the very

recent [28].

In all the paper we consider N D3-branes living at the tip of a CY cone C(H). The base

of the cone, or horizon, is a five-dimensional compact Sasaki-Einstein manifold H [1, 2].

The IR limit of the gauge theory living on the branes is N = 1 superconformal and dual

in the AdS/CFT correspondence to the type IIB background AdS5 ×H. For all the cones

C(H) the gauge theory is of quiver type, with bifundamental matter fields.

The connection of the mesons to holomorphic functions is easily understood from the

quantum field theory point of view. The superconformal gauge theory living on a D3 brane

at conical singularities has a moduli space of vacua which corresponds to the arbitrary

4The T 1 theory obtained in this way is the usual cone over dP4, the blow-up op P2 at four generic points,

whose dual gauge theory was already known [27].
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position of the brane on the cone; it is isomorphic to the CY cone. It is well known that

the moduli space of vacua of an N = 1 gauge theory can be parameterized by a complete

set of operators invariant under the complexified gauge group. The moduli space of vacua

is then described by the chiral mesonic operators.5 These can be considered as well defined

functions on the cone: the functions assign to every point in the moduli space the v.e.v. of

the mesonic operators in that vacuum. From the supersymmetry of the vacuum it follows

that these functions are the same for F -term equivalent operators. We thus expect a one to

one correspondence between the chiral ring of mesonic operators (mesonic operators that

are equivalent up to F -terms equations) and the holomorphic functions on the cone.

When we restrict the holomorphic function to H we obtain an eigenvector of the

Laplacian ¤H . The explicit relation is as follows. Because the cone is Kähler the Laplacian

on C(H) is

¤C(H) = ∂̄∂̄+ + ∂̄+∂̄

and every holomorphic function f(z) on the cone is an harmonic function:

¤C(H)f(z) = 0 .

By writing the CY metric on the cone as ds2
C(H) = dr2 + r2ds2

H we can explicitly compute

¤C(H)f(z) =
( ∂2

∂r2
+

5

r

∂

∂r
+

1

r2
¤H

)

f(z) = 0 . (2.1)

We can rewrite the previous equation as follows

1

r2

(

ξ(ξ + 4) + ¤H

)

f(z) = 0 (2.2)

where ξ = r∂r is the dilatation vector field. An holomorphic function with given scaling

dependence

ξf(z) = δf(z) ,

when restricted to the base H, becomes an eigenvector of the Laplacian operator

¤Hf(z)|H = −Ef(z)|H (2.3)

with eigenvalue E = δ(δ +4). We are now going to show that δ is the conformal dimension

of the corresponding meson.

We first identify the restriction of the holomorphic function to the base with the KK

harmonic corresponding to the meson according to the AdS/CFT correspondence. In the

gravity side, in fact, we have the type IIB string theory propagating on the background

AdS5 × H, and at low energy we can consider the supergravity regime and compute the

AdS-spectrum making the KK reduction on the compact space H. Every ten dimensional

field is decomposed in a complete basis of eigenvectors of the differential operator on H

5The non-abelian theory of N D3 branes has obviously a larger moduli space. In addition to the mesonic

vacua corresponding to N copies of the cone, we also have baryonic flat directions. For the abelian theory

on a D3 brane, baryonic operators are vanishing and the moduli space is described by the mesons.
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corresponding to its linearized equation of motion.6 For scalar fields, this operator is just

related to the Laplacian. From the eigenvalue of the differential operator we read the mass

m of a scalar in AdS5 which is related to the dimension ∆ of the dual field theory operator

by the familiar formula m2 = ∆(∆ − 4).

Consider an eigenvector of the Laplacian YI with eigenvalue E

¤HYI = −E YI .

In the same way as in the familiar case H = S5 the k-th harmonic on S5 is mapped to

the operator φ{i1 . . . φik}, the function YI can be mapped to particular operators OI made

with the scalar fields of the gauge theory. The same eigenvector YI appears in the KK

decomposition of various ten dimensional fields. In particular, it appears in the expansion

of the dilaton and also of the fields gα
α and F

(5)
αβγδε. From the general analysis in [29 – 31],

we have the following correspondence between fields, dual operators and dimensions 7

φ F 2
µνOI m2 = E E = ∆(∆ − 4) ∆ = δ + 4

gα
α/F (5) OI m2 = 16 + E ∓ 8

√
4 + E E = ∆(∆ + 4) ∆ = δ

F 4
µνOI E = (∆ − 4)(∆ − 8) ∆ = δ + 8

The case of chiral mesons MI corresponds to the subset of eigenvectors YI that are

restriction of holomorphic functions on C(H). We see from the previous table that the

dimension ∆ of a meson is related to the corresponding Laplacian eigenvalue by E = ∆(∆+

4). Comparison with equation (2.3) shows that the scaling behavior δ of an holomorphic

function coincides with the conformal dimension of the corresponding meson: ∆ ≡ δ.

It is important to observe that the conformal dimension of the meson can be fixed in

terms of the its charge quantum numbers. We are assuming that there exists a (C∗)r action

with r = 1 or 2 or 3 on C(H). We know that there is at least one C
∗ action which pairs the

dilatation and the Reeb vector of the Sasaki-Einstein manifold. The Reeb vector K is the

geometric dual of the R-symmetry of the gauge theory. In case of extra U(1) isometries, r

can be bigger, r = 3 corresponding to the toric case. If we define φk with k = 1, . . . , r the

coordinates relative to the action of T r ⊂ (C∗)r, a function f(z) with charges mk satisfies

∂φk
f(z) = imkf(z) (2.4)

6After a suitable diagonalization, of course.
7The result in the table can be understood as follows. The expansion of the dilaton is simply given in

terms of eigenvalues of the internal Laplacian ¤H . The fields gα
α and F

(5)
αβγδε instead mix in the equations of

motion, which must be diagonalized and produce two KK towers. The five-dimensional mass is still related

to the internal Laplacian with corrections due to the curvature of the internal manifold. The difference in

dimensions of the various towers are compatible with the fact that, if we assign dimension δ to OI then

F 2
µνOI has dimension δ + 4 and F 4

µνOI has dimension δ + 8. Finally, the identification of scalars fields and

operators is suggested by the couplings in the Born-Infeld action to supergravity modes. The scalar fields

on a D3 brane probe identifies its position in the internal manifold and operators made with scalar fields

can be identified with functions on H .
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In these coordinates we can decompose the Reeb vector K as K =
∑r

k=1 bk∂φk
[15]. Using

this decomposition we have:

Kf(z) = i

r
∑

k=1

bkmkf(z) = i(m, b)f(z) (2.5)

For a Sasaki-Einstein cone

ξ = −JK (2.6)

where J is the complex structure of the CY three-fold [2, 14]. We thus obtain the following

important relation:8

ξf(z) = −JKf(z) = (m, b)f(z) (2.7)

This imply that the dimension ∆ of any meson with charges mk satisfies the relation

∆ = (m, b)

or equivalently for the R charge

R =
2

3
∆ =

2

3
(m, b) (2.8)

Using this relation it is possible to compute the exact R-charges for every BPS mesonic

operators of a gauge theory dual to an arbitrary CY conical singularity as a function of the

Reeb vector ~b of the CY metric. On the other hand, the Reeb vector can be computed from

the geometry resolving an extremization problem explained in detail in [15]: the volume of

a Sasaki metric over H is a function only of the Reeb vector VolH(~b), and the Reeb vector

corresponding to a Sasaki-Einstein metric on H is the minimum of VolH(~b) when ~b varies

on a suitable r − 1 dimensional affine subspace of R
r. Moreover, the function VolH(~b) can

be computed without knowing the metric [15].

For singularities with only an U(1) action formula (2.8) implies that the mesonic R-

charges are all integer multiples of a common factor. This fact can be easily tested in the

known cases i.e. the complex cones over the non-toric del Pezzo surfaces [32]. In the toric

case (2.8) is a known result and it was explained in [33] in the case of the Lp,q,r singularity.

In this paper we will use this result also in the more interesting case of the varieties that

admit a T 2 action.

3. Baryons and mesons: the toric case

We have seen in the previous section that AdS/CFT predicts an equality (2.8) between

the scaling dimensions ∆ of mesons in the gauge theory and some geometrical quantities

(~b · ~m) related to the eigenvalues of the scalar Laplacian on the Sasaki-Einstein H. In the

toric case, where the AdS/CFT correspondence has been explicitly built, equation (2.8)

8A generic vector field over the cone V can be written as V =
P3

i=1 vi∂zi
+

P3
i=1 v̄i∂z̄i

where vi, v̄i are

some coefficients. By definition we have JV = i
P3

i=1 vi∂zi
− i

P3
i=1 v̄i∂z̄i

, and if we apply this differential

operator on any holomorphic function f(z) we obtain JV f(z) = iV f(z).
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can be proved, as we show in this section, thus checking the matching of mesonic operators

in field theory with suitable supergravity states in string theory (the check of the matching

between baryonic operators and wrapped D3-branes inside H was performed in [20] for

the toric case). These results also suggest a quite unexpected and suggestive connection

between Laplacian eigenvalues and volumes of cycles in a Sasaki-Einstein manifold.

In the toric case the geometry can be described by the fan C, a polyhedral cone in

R
3, generated by the integer vectors ~Vi = (xi, yi, 1), i = 1, . . . d. The toric diagram P is

the convex polygon with vertices (xi, yi). The dual cone C∗ is the image of the momentum

map and its integer points ~m ∈ C∗ are the charges of holomorphic functions over C(H):

it is known from toric geometry that holomorphic functions on C(H) are in one-to-one

correspondence with points of C∗ [22], and the multiplicity of each point is equal to one.

See appendix A for more details about these geometrical tools and for a review of periodic

quivers and dimers we will use in the following.

Before proving equation (2.8), we have to describe explicitly the correspondence, in-

troduced in the previous section, between holomorphic functions on C(H) and mesons in

field theory. This correspondence is known in the literature and is called Ψ-map [35, 36].9

Recall that mesons in the gauge theory are closed oriented loops in the periodic quiver

drawn on T 2. To each link in the periodic quiver we can assign a trial charge written as a

sum of suitable parameters ai, i = 1, . . . d in one to one correspondence with the edges Vi

of C: with the restriction
∑

ai = 2 this is a parametrization of R-charges. If we compute

the trial R-charge Ψ(M) of a meson M we discover that it can be written as [36]:

Ψ(M) =

d
∑

i=1

(~m, ~Vi)ai (3.1)

for a point ~m = (n,m, c) ∈ C∗, where (n,m) are the homotopy numbers of the meson on

the torus T 2 of the periodic quiver. We have therefore found the map from mesons to

integer points in C∗, that is holomorphic functions on C(H). Moreover F-term equivalent

mesons are mapped to the same point ~m and conversely mesons mapped to the same point

are F-term equivalent, so that there is a one to one correspondence between the chiral ring

of mesons in the gauge theory and the semi group of integer points of C∗.

Using the Ψ-map to compute the charges, equation (2.8) becomes:

d
∑

i=1

(~m, ~Vi)āi =
2

3
~m ·~b (3.2)

To compare the two sides of this equation we need to compute the exact charges āi from

a-maximization [13], and the vector ~b from volume minimization [14].

As already mentioned, the Reeb vector for a Sasaki-Einstein metric can be found by

minimizing the volume function VolH(~b) of the Sasaki manifold H on a suitable affine

9The Ψ-map was originally defined in [35] as a linear function that assigns to every path in the quiver

a divisor in the geometry. We will use the equivalent definition in [36] that assigns to paths in the quiver

their trial charge.
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i−1

V
i

v i
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(x, y)

i−1
v

Figure 1: The toric diagram P is a convex polygon in the plane with integer vertices obtained as

the intersection of the toric fan C with the plane z = 1.

subspace of R
r. In the case of toric geometry, volume minimization, also known as Z-

minimization, is performed by varying ~b = 3(x, y, 1) with (x, y) inside the toric diagram

P [14]. For convenience, let us introduce the sides of the toric diagram: vi ≡ (xi+1, yi+1)−
(xi, yi) and the vectors ri joining the trial Reeb (x, y) with the vertices: ri ≡ (xi, yi)−(x, y),

see figure 1; we will use the notation: 〈v,w〉 ≡ det(v,w) for vectors in the plane of the toric

diagram P .

a-maximization is done instead on d− 1 independent trial R-charges ai, but as shown

in [20], it can be consistently restricted to a two dimensional space of parameters. The

maximum of the central charge a(ai) as function of the trial charges ai lies on the surface

parameterized as

ai → ai(x, y) ≡ 2li
d

∑

j=1

lj

with li ≡
〈vi−1, vi〉

〈ri−1, vi−1〉〈ri, vi〉
(3.3)

Moreover for every (x, y) inside the toric diagram P we have [20]:

a(x, y) =
π3

4VolH(x, y)
with a(x, y) ≡ a(a1(x, y), . . . ad(x, y)) (3.4)

where VolH(x, y) is the volume function VolH(~b) for a Sasaki metric computed at the trial

Reeb vector: ~b = 3(x, y, 1) and a(x, y) is the central charge a evaluated on the parameter-

ization ai(x, y). This shows the equivalence of a-maximization and Z-minimization for all

toric singularities [20].

Now it is easy to see that equation (3.2) holds not only at the extremal points āi of

a-maximization and (x̄, ȳ) of Z-minimization, but on the entire two dimensional surface

parameterized by (x, y) ∈ P . Indeed (3.2) follows easily from the equality:

d
∑

i=1

ai(x, y)~Vi = 2(x, y, 1) ∀(x, y) ∈ P (3.5)
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which is easily proved [14, 20]: the third component is obvious and the first two reduce to

the geometrical equality:
∑

i liri = 0, which is equation (A.27) in [20]. We have therefore

checked the matching of conformal dimensions of mesons with the masses of corresponding

supergravity states.

In the case of toric geometry, one could also extract information about the exact R-

charges of the chiral fields in the quiver gauge theory by studying baryonic operators. It

is known indeed that baryons are dual to D3-branes wrapped over calibrated three cycles

Σ ⊆ H. In the toric case there is a basis of calibrated cycles Σi, i = 1, . . . d which are in

one to one correspondence with vertices ~Vi of the toric diagram. The baryonic operator

in field theory: εα1...αN Φβ1
α1 . . . ΦβN

αN εβ1...βN
made with a chiral bifundamental field Φβ

α with

trial charge ai is dual to a D3-brane wrapped on Σi.
10 The AdS/CFT relation between

the scaling dimension of the operator and the mass of the dual state is [34]:

ai =
π

3

Vol(Σi)

Vol(H)
(3.6)

This relation is perfectly consistent with the parameterization (3.3) since, as shown in [14],

the formulae for the volumes of H and of Σi as a function of the Reeb vector 3(x, y, 1) are:

VolΣi(x, y) =
2π2

9
li VolH(x, y) =

π

6

d
∑

i=1

VolΣi(x, y) (3.7)

Therefore, the relation (3.6) is valid, not only at the extremal point (x̄, ȳ), but also for

generic points (x, y) ∈ P .

As we have just seen the exact charges of chiral fields in the quiver gauge theory,

which allow to compute scaling dimensions of baryons and mesons, are related to volumes

of calibrated submanifolds (3.6) inside H (baryons) and to (certain) eigenvalues of the

scalar Laplacian on H (mesons). We can invert these relations and get an interesting

relation only between the geometrical quantities.

We use points ~m in C∗ to parametrize mesons. ¿From the previous section we have the

relation between some eigenvalues −E~m of the Laplacian on H and the R-charges R~m of

the corresponding mesonic operators:

E~m = ∆(∆ + 4) =

(

3

2
R~m + 2

)2

− 4 (3.8)

where we have used ∆ = 3/2R~m. The R-charge R~m for mesons is computed through the

Ψ-map (3.1), and using equation (3.6) for the ai we get the relation:

E~m =
[(

d
∑

i=1

(~m, ~Vi)
π

2

Vol(Σi)

Vol(H)
+ 2

)2
− 4

]

(3.9)

This is a very interesting general geometric relation that is given by the AdS/CFT corre-

spondence; we have seen that it is valid for every six dimensional toric CY cone.

10If the baryon is built with a chiral field of trial charge ai + ai+1 + . . . aj , it corresponds to a D3-brane

wrapped over the union Σi ∪ Σi+1 ∪ . . . Σj .
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We can try to invert equation (3.9) in order to find information concerning the divisors

and their volumes starting from the eigenvalues E~m. This is a very interesting point of

view, because in the toric case we can directly compute both sides of the relation without

the explicit knowledge of the Sasaki-Einstein metric on the base H, but in the general case

we are able to compute only the left hand side. Therefore it would be interesting to try to

understand if it is possible to generalize equation (3.9) outside the toric geometry and find

in this way a tool to obtain information regarding the divisors in the general case of a CY

conical singularity without knowing the explicit CY metric.

More generally the problem of computing the volumes of the bases of divisors for non

toric cones without the explicit knowledge of the CY metric should be further investigated.

When the Sasaki-Einstein manifold H is quasi-regular (which includes all T 1 theories) it can

be realized as a U(1)R fibration over a Kähler-Einstein orbifold basis, and the computation

of volumes can be solved through an intersection problem on this basis, as shown in [37 –

39]. For instance in [37] one can find the computations of volumes of divisors for the

generalized conifolds, that we will consider in section 6. For irregular T 2 cases it would be

interesting to know whether there exist localization methods for the volumes of divisors

analogous to those in [15] for Vol(H).

4. Non-toric cones

In this section we explain how to build a wide class of non-toric examples of the AdS/CFT

correspondence starting from toric cases. The idea is very simple: we have to add to a

quiver gauge theory dual to a toric geometry suitable superpotential terms, keeping the

same number of gauge groups and the same quiver diagram (some fields may be integrated

out if we are adding mass terms). The new terms in the superpotential must be chosen in

such a way to break one or both of the two U(1)2F flavor symmetries of the original toric

theory: they correspond therefore to a relevant deformation of the superconformal toric

theory which in the IR leads generically to a new surface of superconformal fixed points,

characterized by different values for the central charge a and for the scaling dimensions of

chiral fields.

We will be interested in particular to the cases when the mesons of the new theory

obtained by adding superpotential terms still describe D3-branes moving in a complex three

dimensional cone. To compute this geometry in concrete examples it is easier to replace all

SU(N) gauge groups with U(1) gauge groups and compute the (classical) moduli space of

the quiver gauge theory; this is the geometry seen by a single probe D3-brane. Moreover

in the abelian case the baryonic operators are automatically excluded.

With a generic superpotential the complex dimension of this mesonic moduli space can

be less than three. This happens for example with massive deformations. Moreover, inside

a manifold of fixed points, in addition to gauge theories with three dimensional moduli

space there are other theories with reduced space of vacua. In fact, the addition of relevant

or marginal deformations to a gauge theory alters the F-term equations and this easily

leads to a reduced or even to a zero dimensional moduli space. Familiar cases studied in

the literature are the mass deformation of N = 4 theory [40] and the β deformation of
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N = 4 theory or of other toric cases [41, 42]. In all these cases, the supergravity dual is a

warped AdS5 solution with three-form flux; the fluxes in the internal geometry generate a

potential for the probe D3-brane that cannot move in the whole geometry. Different is the

story when the moduli space of the gauge theory is three dimensional: the supergravity

dual of a superconformal gauge theory with three dimensional moduli space is necessarily

constructed using a Calabi-Yau cone.11 The gauge theory is therefore dual to type IIB

string theory on AdS5 × H (with no H3 or B3 fluxes and constant dilaton) where H is

the Sasaki-Einstein horizon of the CY cone; the isometry group of H is now reduced to

U(1)2 or U(1) if we have broken one or two flavor symmetries respectively. The CY cone

is therefore no more toric.

In the construction of new examples of non-toric quiver gauge theories with this method

we obviously need to be careful about the real existence of the IR fixed point. We can

compute central and R-charge of the IR theory by using a-maximization: we have to check

that all unitarity requirements are satisfied. Obstructions to the existence of CY conical

metrics on singularities, which are the geometric duals of the unitarity constraints, have

been discussed in [28].

We explain now the details of the construction. Consider the original toric theory. As

explained in the previous section, the mesons of this theory are closed oriented loops in

the periodic quiver drawn on T 2 and are mapped by the Ψ-map into integer points ~m of

the polyhedral cone C∗, the dual cone of the toric fan C. The trial charge of any meson

mapped to ~m is

Ψ =

d
∑

i=1

(

~m · ~Vi

)

ai (4.1)

expressed in terms of the parameters ai, i = 1, . . . d associated with the vertices of the toric

diagram P as in [20]; d is the number of vertices of P and the vectors ~Vi = (xi, yi, 1) are

the generators of the fan C.

The mesons belonging to the superpotential of the toric theory are those mapped to

the point ~m0 ≡ (0, 0, 1), since their trial charge is a1 + . . . ad [35, 36]. Therefore we have

to impose the conditions:

d
∑

i=1

(

~m0 · ~Vi

)

ai =

d
∑

i=1

ai = 2 R-charges (4.2)

11We thank A. Tomasiello for an enlightening discussion on this point. The argument goes roughly

as follows. Supersymmetric solutions of type IIB can be described by SU(2) or SU(3) structures and a

very convenient framework to describe them is given by the pure spinor formalism [23]. Supersymmetric

conditions for D3 brane probes in general backgrounds have been discussed in [24]. It is easy to check

(see for example [26]) that all SU(2) structure solutions have D3-brane moduli space of dimension less

than three; massive and β-deformations are indeed of SU(2) type [26]. It follows that all solutions with

three dimensional moduli space for D3 probes are necessarily SU(3) structures. However, it has been

proven in [25] that all AdS5 solutions with SU(3) structure (this are SU(2) structure in the five-dimensional

language used in [25]) are necessarily of the form AdS5 × H with H Sasaki-Einstein. This proves the

argument. Notice that the requirement of conformal invariance is necessary for this argument; there are

well known examples of non-conformal SU(3) structure solutions which are not of Calabi-Yau type, for

example the Maldacena-Nunez solution [43] or the baryonic branch of the Klebanov-Strassler solution [44].
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to find the non anomalous R-symmetries or

d
∑

i=1

(

~m0 · ~Vi

)

ai =

d
∑

i=1

ai = 0 global charges (4.3)

to parametrize the d − 1 global non anomalous U(1) symmetries. Among them, the d − 3

baryonic symmetries satisfy the further constraint:

d
∑

i=1

ai
~Vi = 0 global baryonic charges (4.4)

Suppose now to add to the superpotential (all) the mesons that are mapped to a new

integer point ~m1 of C∗.12 Call ~d the difference: ~d = ~m1 − ~m0; for the new superpotential

terms we have to impose that the trial charge (4.1): Ψ =
∑

(

~m1 · ~Vi

)

ai is equal to 2 or to

0 if we want to parametrize R-symmetries or global symmetries respectively. Taking the

difference with equations (4.2) or (4.3) respectively we obtain that the new condition we

have to impose to move away from the toric case is:

d
∑

i=1

(

~d · ~Vi

)

ai = 0 (4.5)

both for R-symmetries and for global charges. Note that, with the only constraint (4.5),

we can add to the superpotential all mesons mapped to the points ~mk = ~m0 + k ~d with k

integer, that is all integer points in C∗ lying on a line passing through ~m0.

Since we are not changing the quiver, the conditions for a charge to be non anomalous

are the same as in the toric case and so are again satisfied with the known parametrization

with ai satisfying conditions (4.2) or (4.3). Note moreover that all the d − 3 baryonic

symmetries (4.4) of the toric case satisfy also the new restriction (4.5). Therefore imposing

condition (4.5) we are breaking a flavor symmetry: the modified theory has d − 2 non

anomalous global charges: U(1)F × U(1)d−3
B . The supergravity dual, if it exists, will have

therefore an internal manifold H with isometry U(1)2 and therefore the corresponding CY

cone cannot be toric. We will refer to these theories as T 2 theories, since T 2 is the maximal

torus of the isometry group.

It is easy to generalize to the case when H, if the supergravity dual exists, may have

only isometry U(1): in the gauge theory we have to break both the original flavor symme-

tries. We add therefore to the superpotential all mesons mapped to integer points of C∗

lying on a plane passing through ~m0, that is points of the form: ~m0 + k ~d1 + h ~d2 with k,

h integers and ~d1, ~d2 suitable independent vectors. Both for global and R-symmetries we

have to add the constraints:

d
∑

i=1

(

~d1 · ~Vi

)

ai = 0

d
∑

i=1

(

~d2 · ~Vi

)

ai = 0 (4.6)

12We are changing here the theory, but we consider the Ψ-map of the original toric theory.
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that preserve only the original d − 3 baryonic symmetries. We will refer to these theories

as T 1 theories.

We will assign generic coefficients to all mesons appearing in the superpotential and

study in concrete examples the moduli space of the resulting quiver gauge theory. For

instance it is always possible to write down the moduli space of the quiver gauge theory as

an intersection of surfaces in a complex space C
n, where the complex variables correspond

to mesons and the equations are the relations in the chiral ring of mesons (in the abelianized

theory). Note that the moduli spaces in the modified theories are always cones since at least

one C
∗ action of the original C

∗3 toric action survives on mesons. For some values of the

vector(s) ~d (or ~d1, ~d2) there exist suitable choices of the coefficients in the superpotential

for which the moduli space of the gauge theory is three dimensional. As already explained

we expect in these cases that the supergravity duals of these theories are in the general

class AdS5 × H, with H the Sasaki-Einstein base of the cones of the moduli space.

Interestingly some information about the geometry of the new non toric cones obtained

with such constructions can be deduced by the original theory. Consider for instance the

T 2 case; the geometry has now a C
∗2 action. Holomophic functions over the complex cone

have two charges under the C
∗2 actions, and therefore they are mapped to integer points in

the plane; we will call C∗
T 2 the minimal cone in the plane whose integer points are possible

charges of holomorphic functions.13 The difference with the toric case C∗ ≡ C∗
T 3 is that

C∗
T 2 is two dimensional and integer points of C∗

T 2 may have multiplicities greater than one;

the multiplicity is the number of holomorphic functions that are mapped to that point.

We can count the holomorphic functions by looking at mesons in the quiver gauge theory.

Since the quiver is the same, mesons in the non toric theory are the same as in the original

toric theory; the difference is that now mesons mapped to points ~m + k ~d in the C∗ cone of

the toric theory have all the same trial charge because of equations (4.1), (4.5). Therefore

C∗
T 2 is simply the quotient of the cone C∗ of the toric theory with respect to direction ~d.

We will write:

C∗
T 2 = π(C∗) (4.7)

where π stands for the projection along ~d: ~m ∼ ~m + k~d. The non trivial fact is that we

can obtain also the multiplicities of holomorphic functions (linearly independent mesons)

with fixed charges under the C
∗2 action by counting the number of integer points of the

polyhedral cone C∗ of the toric theory belonging to the same line with direction ~d. We

have checked this in some concrete examples; indeed the introduction of new superpotential

terms modifies the F-term linear relations between mesons. It is reasonable that the number

of linearly independent mesons is not modified, but we do not have a general proof of this

fact. We conjecture that the multiplicities of holomorphic functions with assigned charges

is always obtained in this way by the quotient of the original C∗ along direction ~d when

the moduli space is three dimensional.14

13It would be interesting to know whether C∗

T2 is also the image of the momentum map of the Kähler

cone.
14When the dimension of the moduli space is less than three we found in concrete examples that some

chiral fields, and therefore some mesons, must be set to zero in order to satisfy the F-term equations; the

counting of holomorphic functions in these cases is not so straightforward.
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Note that if we want to have a finite number of holomorphic functions with fixed

charges the vector ~d must lie in the complementary of the union of C∗ and −C∗, with C∗

the image of the momentum map for the toric case:

~d ∈ R
3 \ (C∗ ∪ (−C∗)) (4.8)

This condition is equivalent to the fact that lines ~m+k ~d contain a finite number of integer

points of C∗ (if ~d were in C∗ ∪ (−C∗), say in C∗, then for any ~m ∈ C∗ the whole half line

~m + k~d, k ≥ 0, would be in C∗).

Another condition on the vector ~d follows from the fact that the line through ~m0 =

(0, 0, 1): ~m0 + k ~d must pass through at least another integer point in C∗, since this line

represents superpotential terms we are adding to modify the toric case. That is at least

one of the points ~m1 = ~m0 + ~d, ~m−1 = ~m0 − ~d must lie in C∗, say ~m1 (of course we can

exchange ~d with −~d). It follows that ~m1 must lie on a facet (or) edge of C∗: if it were in the

interior of C∗ (strictly positive integer scalar products with all ~Vi) then ~m1− ~m0 = ~d would

be again in C∗ (~m0 has scalar product 1 with all vectors ~Vi), but this is in contradiction

with (4.8). Therefore we can add to the superpotential only mesons ~m1 and/or ~m−1 along

facets of C∗ (mesons mapped to ~m + k ~d with |k| > 1 lie outside C∗).

The case T 1 with a single C
∗ action is completely analogous: the cone of holomorphic

functions C∗
T 1 (and the image of the momentum map) is a half-line and is obtained by

making the quotient of the polyhedral cone C∗ for the toric case with respect to the plane

generated by the directions ~d1, ~d2:

C∗
T 1 = Π(C∗) (4.9)

where Π stands for the quotient along the plane generated by ~d1, ~d2: ~m ∼ ~m + k~d1 + h~d2.

The number of integer points of C∗ in these planes counts the number of holomorphic

functions in the non toric cone with assigned charge, when the moduli space of the quiver

gauge theory is three dimensional. Again mesons added to the superpotential of the toric

theory must lie on facets of C∗, and in order to obtain finite multiplicities condition (4.8)

must hold for ~d1, ~d2, and for all integer vectors in their plane. Consider the rational line R

passing through the origin and perpendicular to the plane of ~d1, ~d2, and call ~n the primitive

integer vector generating R. Then the condition for having finite multiplicities can be more

easily restated as:

~n ∈ interior of: C ∪ (−C) (4.10)

obviously the case ~n → −~n is the same, and hence we can suppose ~n · ~gi > 0, where

~gi are the generators over integer numbers of C∗. Integer points ~m in C∗ on the same

plane perpendicular to ~n have constant scalar product: ~m · ~n = k, for some integer k. To

prove (4.10) suppose that there exist two generators of C∗, say g1, g2, such that: ~g1 · ~n ≥
0 and ~g2 · ~n ≤ 0. Then every plane ~m · ~n = k would contain also the points in C∗:

~m+h [(~g1 · ~n)~g2 − (~g2 · ~n)~g1] for any positive integer h. Thus condition (4.10) is equivalent

to having finite multiplicities.

With these rules for counting multiplicities, it is not difficult to write down the gener-

ating functions (characters) for multiplicities of holomorphic functions also in the non toric
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Figure 2: Quiver for (P )dP4 theories.

cases. As discovered in [15] it is possible to deduce from these characters the volume of

the Sasaki manifold H in function of the Reeb vector. It is therefore possible to show that

the volume computed in this way matches the results of a-maximization according to the

predictions of AdS/CFT correspondence. We will give a proof of this fact for the class of

theories introduced here in section 8. Now we will give some examples of the construction

we have just explained.

5. Examples: (P )dP4 theories

We consider now some concrete examples of the construction suggested in the previous

section starting from the known cases of (P )dP4 theories and extending them.

The del Pezzo 4 surface, dP4, is obtained by blowing up P
2 at four points at generic

positions.15 The complex cone over dP4 can be endowed with a CY metric and the dual

quiver gauge theory is known in the literature; the quiver is reported in figure 2, the super-

potential WT 1 was found in [27]. This CY has only one C
∗ action (the one corresponding

to the complex fibration in the complex cone), that is the maximal torus of isometry group

is T 1. Correspondingly the dual gauge theory has only one U(1)R and no non-anomalous

flavor symmetries.

Instead if we choose as a Kähler basis of the CY a surface obtained by blowing up P
2

at non generic points it is possible to preserve more symmetries. A possible example with

isometry T 3 is the toric CY described by the toric diagram with vertices Vi = (xi, yi, 1):

(0, 0, 1) (1, 0, 1) (2, 0, 1) (2, 1, 1) (1, 2, 1) (0, 2, 1) (0, 1, 1) (5.1)

We will refer to this manifold as the complex cone over Pseudo del Pezzo 4, PdP4, as

already done in the literature. We draw the toric diagram in figure 3 where we report also

15that is no three of them are on a line. Therefore one can perform a SL(3, C) transformation to put the

four points in the fixed positions: (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) in P
2. The moduli space of complex

deformations of dP4 is a single point.
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Figure 3: Dimer configuration and toric diagram for the toric PdP4 theory.

the dimer of the dual gauge theory. The dimer has F = 7 gauge groups, E = 15 chiral

fields and V = 8 superpotential terms.

Interestingly the quiver diagram of PdP4 theory obtained from the dimer is just the

same as the quiver of dP4 theory in figure 2: the difference between the two gauge theories

is in the superpotential. They have the same global baryonic symmetries (equal to d−3 = 4

with d the perimeter of the toric diagram), since they depend only on the quiver diagram

and not on the superpotential (the total charge of every vertex and of every closed loop in

the quiver is zero for baryonic symmetries). But for PdP4 the superpotential allows two

flavor symmetries, whereas for dP4 new terms in the superpotential are added to break both

the original flavor symmetries. As we will see we can interpret dP4 theory as a “quotient”

of PdP4 in the sense of the previous section.

5.1 The toric case

Let us start to study the toric theory. In figure 3 we draw zig-zag paths in the dimer

corresponding to vectors of the (p,q) web drawn in the same color; this correspondence

allows to find the distribution of charges ai with the method explained in [21]:

X17→a1 + a6 + a7 X21→a7 X27→a3 + a4

X73→a2 X14→a1 + a2 + a3 X74→a5

X13→a4 + a5 + a6 X62→a5 + a6 X51→a4 + a5

X61→a2 + a3 X52→a1 + a2 X36→a1 + a7

X45→a6 + a7 X46→a4 X35→a3

(5.2)

where Xij is the chiral field from gauge group i to j. The parameters ai are associated

with vertices of the toric diagram as in figure 3. If the sum a1 + a2 + . . . a7 is equal to 2
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(0) we get a parametrization of non anomalous R-symmetries (global symmetries) in the

toric theory.

We can start to study the closed loops in this quiver, independently from the super-

potential. There are 24 irreducible (that cannot be written as a product of smaller loops)

mesons:

m1 = X61X17X74X46 m3 = X21X13X35X52 m5 = X27X73X36X62 m7 = X14X45X51

m2 = X51X17X73X35 m4 = X21X14X46X62 m6 = X27X74X45X52 m8 = X13X36X61

n1 = X21X13X36X62 n3 = X17X74X45X51 n5 = X27X73X35X52 n7 = X14X46X61

n2 = X21X14X45X52 n4 = X17X73X36X61 n6 = X27X74X46X62 n8 = X13X35X51

p1 = X21X17X74X46X62 q1 = X21X17X74X45X52

p2 = X21X17X73X35X52 q2 = X21X17X73X36X62

t1 = X27X73X35X51X14X46X62 t2 = X27X73X36X61X14X45X52

t3 = X27X74X45X51X13X36X62 t4 = X27X74X46X61X13X35X52

(5.3)

Since we are thinking to the abelianized theory with all U(1) gauge groups we will not

write traces in front of mesons.

¿From these definitions and from (5.2) we can deduce the parametrization of charges

Ψ for mesons, and setting the charge Ψ equal to
∑

(~m · ~Vi) ai as in (4.1) we can see to

which point ~m of C∗ each meson is mapped:

m1, . . . m8 → (0, 0, 1) q1, q2 → (−1,−1, 3)

n1, n3, p1 → (−1, 0, 2) n5, n7 → (1, 0, 0)

n2, n4, p2 → (0,−1, 2) n6, n8 → (0, 1, 0)

t1, t4 → (1, 1, 0) t2 → (1,−1, 2)

t3 → (−1, 1, 2)

(5.4)

Mesons mapped to the same integer point in C∗ are F-term equivalent in the toric theory:

the multiplicities of integer points in C∗ is equal to one in toric theories. A basis for the

cone C∗, dual to the cone C in (5.1) is given by the points:

(0, 1, 0) (−1, 0, 2) (−1,−1, 3) (0,−1, 2) (1, 0, 0) (0, 0, 1) (5.5)

where the first five vectors are the perpendiculars to the facets of C and we have to add also

(0, 0, 1) to have a basis over the positive integer numbers. Note that the inverse image of the

six generators in (5.5) under Ψ-map consists only of irreducible loops in the quiver, since

composite mesons are mapped to the sum of the points corresponding to their constituents.

Instead the irreducible mesons t1, t2, t3 and t4 are mapped to points in C∗ that are not

generators.

The superpotential for the toric theory can be read off from the dimer and it can be

written as:

WT 3 =
8

∑

i=1

cimi (5.6)
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Recall in fact that in the toric superpotential there appear only mesons mapped to ~m0 =

(0, 0, 1). We have also inserted general coefficients in front of every meson ci, i = 1, . . . 8.

Many of them can be reabsorbed with a rescaling of fields: Xij → rijXij, under which also

mesons are rescaled as mi → rimi where the ri are products of the suitable rij. In the

space of mesons m1, . . . m8 there is only one relation following from the definitions (5.3):

m1m3m5m7 = m2m4m6m8 or : r1r3r5r7 = r2r4r6r8 (5.7)

This equality implies that the ratio:
c1c3c5c7

c2c4c6c8
(5.8)

is constant under field rescaling. Therefore since we have 8 coefficients in the superpoten-

tial (5.6) and one relation (5.7) we can reabsorb only 7 parameters in the superpotential

through rescaling. For instance we can put the superpotential in the form:

WT 3 = m1 + m3 + m5 + m7 − b (m2 + m4 + m6 + m8) (5.9)

where we are assuming that all the original coefficients ci are different from zero.

Now we have also to impose the F-term constraints: by solving the F-term equations

of (5.9) it is easy to see that there exists a complex three dimensional moduli space of

vacua only if the ratio in (5.8) is equal to one, that is b4 = 1. Of course any quartic root

of unity is equivalent, up to rescaling. With the choice b = 1 we find the usual result:

WT 3 = m1 + m3 + m5 + m7 − (m2 + m4 + m6 + m8) (5.10)

In fact m1, m3, m5, m7 correspond to white vertices in the dimer, whereas m2, m4, m6,

m8 correspond to black vertices. The analysis performed here is general for toric theories:

all but one coefficients in the superpotential can be reabsorbed through rescaling, and F-

term conditions imply that also the last parameter is fixed as in (5.10) if we want a three

dimensional moduli space. In fact we expect that for all toric three dimensional cones

there are no complex structure deformations that leave the manifold a complex cone. If

b4 6= 1 in (5.9) indeed the dimension of the moduli space is reduced (there are one complex

dimensional lines): this is a beta deformation of the toric theory [42].

5.2 T 1 and T 2 examples

Now we are ready to modify the toric theory as explained in section 4. We observe in

fact that to obtain the gauge theory for dP4 we have to add to the superpotential mesons

mapped to points ~m0 + k ~d1 + h ~d2 of the toric C∗ with:

~d1 = (1, 0,−1) ~d2 = (0, 1,−1) (5.11)

The vectors ~m0 + k ~d1 + h ~d2 with k and h integers and belonging to C∗ are exactly the

generators of C∗ in (5.5), therefore the superpotential becomes:

WT 1 =
8

∑

i=1

aimi +
8

∑

i=1

cini +
2

∑

i=1

(fipi + giqi) (5.12)
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that is we can consider all the first 20 mesons in (5.3), multiplied with generic coefficients

ai, ci, fi, gi; for simplicity we will consider the coefficients ai of the toric terms different

from zero. A particular choice of these coefficients reproduces the theory for dP4 [27]. In

fact we can study the superpotential (5.12) performing the same analysis just explained in

the toric case: solving F-term equations and imposing the existence of a three-dimensional

moduli space we get some equations for the coefficients ai, ci, fi, gi. We have not studied

in detail all the possible branches of relations between these coefficients, but we have

explicitly verified that there are solutions admitting a three dimensional cone of moduli

space where the D3-branes can move. The isometry for the non toric cone is T 1 (it is

enough that a suitable number of coefficients in (5.12) is different from zero, so that both

original flavor symmetries are broken). Once we have imposed that the moduli space is

a three dimensional complex cone, we have to remind that not all different choices of

coefficients in the superpotential (5.12) determine inequivalent cones from the complex

structure point of view. The computation of the complex deformations of the non toric

cone is non trivial. In fact, differently from the toric case, non toric cones may admit

complex structure deformations that leave the manifold a cone. One way to compute

the deformations is to write the complex cone as an intersection in some C
k space, where

typically the complex variables are associated with mesons, and then consider generic linear

redefinitions of the complex variables.16 We have not performed explicitly the computation

in the T 1 case starting with generic coefficients in the superpotential (5.12), however in

this case by simple geometrical considerations17 we expect that there does not exist any

complex structure deformation for the T 1 cone that leaves it a cone.

With the same quiver, we can build gauge theories whose moduli space is a non toric

cone with isometry T 2: we can choose to project the toric theory only along one direction

in (5.11), for instance choose:18

~d = ~d1 = (1, 0,−1) (5.13)

The points in C∗ of the form ~m0 + k ~d are: (−1, 0, 2), (0, 0, 1), (1, 0, 0) for the integers

k = −1, 0, 1 respectively; the corresponding superpotential is:

WT 2 =

8
∑

i=1

aimi + c1n1 + c3n3 + c5n5 + c7n7 + f1p1 (5.14)

Again it is simple to verify that there are choices of the coefficients ai, ci, f1 for which there

exists a three dimensional moduli space for the gauge theory with isometry T 2. Moreover

16In the toric case we saw that it is enough to consider rescalings of chiral fields and impose conditions

for the existence of a three dimensional moduli space to reabsorbe all the coefficients in the superpotential,

showing that there does not exists any complex structure deformation that leaves the manifold a cone. In

more general cases one should consider all possible linear relations among mesons to get the correct counting

of complex structure deformations. See appendix B for further details.
17In fact the T 1 superpotential in [27] for dP4 belongs to this general class of superpotentials and it

is known that the complex cone over dP4 has no complex structure deformations that leave it a cone.

Correspondingly the positions of the four blow-up points in P
2 can be fixed with SL(3, C) transformations,

for instance to (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1).
18The other choice ~d = ~d2 is equivalent up to a relabeling of gauge groups 3 ↔ 4 and 5 ↔ 6 in the quiver.

– 20 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
1

in this T 2 case we explicitly checked that there are choices of parameters that give a one

complex dimensional family of complex structure deformations that leave the manifold a

cone.19 As we will see all the cones in this family of complex structure deformations have

the same volume (for a Sasaki-Einstein metric on their basis) and the same multiplicities

for holomorphic functions. In fact these features can be reconstructed from the original

toric theory and from the information about the quotient (5.13). For more details about

the moduli spaces of (P )dP4 theories see appendix B.

5.3 The cone of holomorphic functions

As explained in section 4, it is easy to compute the possible charges of holomorphic functions

and the multiplicities (that is the dimension of the vector space of holomorphic functions

with an assigned charge), by taking the quotient of the toric C∗ along the directions ~d1, ~d2

for T 1 theory or along ~d for T 2. Let us first of all find an SL(3, Z) transformation A that

sends the vector ~d1, ~d2 into (1, 0, 0) (0, 1, 0) respectively; choose for example:

A =







1 0 0

1 2 1

1 1 1







~d
′

1 = A~d1 =







1

0

0






, ~d

′

2 = A~d2 =







0

1

0






(5.15)

In this new system of coordinates the generating vectors (5.5) of the toric C∗ are sent

respectively into:

(0, 2, 1) (−1, 1, 1) (−1, 0, 1) (0, 0, 1) (1, 1, 1) (0, 1, 1) (5.16)

and the Ψ-map (5.4) for the first 20 mesons in (5.3) becomes:

m1, . . . m8 → (0, 1, 1) q1, q2 → (−1, 0, 1)

n1, n3, p1 → (−1, 1, 1) n5, n7 → (1, 1, 1)

n2, n4, p2 → (0, 0, 1) n6, n8 → (0, 2, 1)

(5.17)

Now the quotient along the direction ~d
′

= ~d
′

1 is simply the projection of the cone C∗ on

the plane (y′, z′); we draw it in figure 4a). This is the cone of charges for the theories with

isometry T 2 (5.14); the multiplicities of holomorphic functions with charge (n′,m′) are the

number of points of C∗ projected to (n′,m′). For example among the generators (5.16),

the two vectors (-1,0,1), (0,0,1) are mapped into (0,1); the three vectors (-1,1,1), (1,1,1),

(0,1,1) are mapped into (1,1) and the vector (0,2,1) is mapped into (2,1).

In the same way one can obtain the cone (indeed a half-line) of charges of holomorphic

functions for the theories with isometry T 1 (5.12) by projecting the toric C∗ on the axis z′;

we draw it in figure 4b). All the generators (5.16) are mapped into the point 1, which has

therefore multiplicity equal to 6.

19Interestingly this is in agreement with the expectation that these theories should describe complex

cones over blow up of dP4 at four points. In fact if the blow up points are not at generic positions, but they

are chosen so as to preserve a T 2 symmetry, then there may remain one complex parameter of deformations.

Consider for instance the T 2 configuration of points on the same line: (1, 0, 0), (0, 1, 0), (1, 1, 0), (α, β, 0).

Then the fourth point cannot be moved with SL(3, C) transformations that keep fixed the first three points.

– 21 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
1

y

z

a) b)
O

2 3 1

3 4 5 3 1

4 5 6 7 5 3 1

1

z

31

16

51

6

1

Figure 4: The multiplicities of holomorphic functions with fixed charge(s) over (P )dP4 cones with

a) isometry T 2, b) isometry T 1.

We can perform some checks that the cones of holomorphic functions are those drawn

in figures 4 by writing down the linear relations among mesons induced by F-term relations

in the different theories and counting the number of linearly independent mesons with a

fixed charge. We will do that for mesons mapped to the generators of C∗, one should check

the multiplicities also for more complicated mesons. Linear relations among mesons are

obtained by multiplying the F-term relation ∂W/∂Xij = 0 with paths going from node i

to node j. For example Xij∂W/∂Xij = 0 can be rewritten in terms of mesons appearing in

the superpotential; other linear relations can be deduced manipulating non linear equations

between mesons using these linear constraints.

In the toric case (5.10) the linear relations are simple equalities; for the first 20 gener-

ators in (5.3) we get:

m1 = . . . = m8 q1 = q2

n1 = n3 = p1 n5 = n7

n2 = n4 = p2 n6 = n8

(5.18)

More generally in toric theories mesons mapped to the same point in C∗ are equal, so

that the cone of charges of holomorphic functions is C∗ and each integer point in C∗ has

multiplicity equal to one.

Consider instead the theory T 2 (5.14) and rescale the coefficients in the superpotential

to the form:20

W = a(m1 +m3 +m5 +m7)− b(m2 +m4 +m6 +m8)+ cn1−dn3 + en5−fn7 + gp1 (5.19)

The 13 mesons m1 . . . m8, n1, n3, p1, n5, n7, that are all mapped to the point (1, 1), satisfy

20one could perform also other rescalings. A possible choice of relations among coefficients that assures the

existence of a three dimensional moduli space is: e = (b2f)/(a2 −df), g = (ab4 −a5 +2a3df −ad2f2)/(b3f),

c = (a4 − b4 − a2df)/(b2f).
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Figure 5: Resolution of complex cone over PdP4

a set of 10 independent linear relations:

am1 − bm2 − dn3 + gp1 = 0 am3 − bm4 + cn1 + gp1 = 0 am5 − bm6 + en5 = 0

−bm2 + am5 + en5 = 0 −bm4 + am7 − fn7 = 0 am3 − bm8 + cn1 = 0

−bm4 + am5 + cn1 + gp1 = 0 −bm2 + am7 − dn3 = 0 −fm1 + an3 − bp1 = 0

−fm4 − bn1 + ap1 = 0

(5.20)

so that we have verified that there are 3 independent holomorphic functions with charge

(1, 1). The 5 mesons n2, n4, p2, q1, q2, that are mapped to the point (0, 1) satisfy 3

independent linear relations:

ap2 − bn4 + cq2 = 0 an2 − bp2 − dq1 ep2 − bq1 + aq2 = 0 (5.21)

so that the point (0, 1) has multiplicity 2. The mesons n6, n8, mapped to (2, 1), satisfy one

linear relation:
(

a2 − df
)

n6 − b2n8 = 0 (5.22)

and therefore the point (2, 1) has multiplicity 1. Note that all relations written for the

theory T 2 reduce to equalities in (5.18) if we set c = d = e = f = g = 0, and a = b = 1,

that is when we recover the toric superpotential. Note that obviously both in the toric

theory T 3 and in the T 2 theory there are linear relations only for mesons having the same

global charges. The introduction of superpotential terms that break one flavor symmetry

modifies the linear relations of the toric case: now all mesons mapped to aligned integer

points ~m + k~d of the toric C∗ may appear in the same linear relations since they have the

same charges in the T 2 theory (4.5).

The case of the theories with symmetry T 1 is completely analogous: linear relations

written before (5.20), (5.21), (5.22) are extended to include all the 20 considered mesons,

that are now mapped to the same point 1 in figure 4b); this point has therefore multiplicity

equal to 6.

5.4 Characters and volumes

The equivariant index of the Cauchy-Riemann operator ∂̄ [45] on a (CY) cone allows to

count the number cm of holomorphic functions with fixed charge m ≡ (m1, . . . ,mr) [15],
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where r is the dimension of the maximal torus T r of the isometry group (in our examples

r = 1, 2 or 3). The character C(q), q ≡ (q1, . . . qr) is the generating function of the number

of holomorphic functions:

C(q) =
∑

cm qm ≡
∑

cm qm1
1 . . . qmr

r (5.23)

For toric cones holomorphic functions are in one to one correspondence with the set SC of

integer points of C∗, and hence the character is:

C(q) =
∑

m∈SC

qm (5.24)

moreover it can be easily computed by resolving the cone [15]: the contributions to C(q)

come only from the fixed points of the toric action.

In our example we can choose for PdP4 the resolution drawn in figure 5 with fixed

points pA, A = 1, . . . 7; at each fixed point A there are n = 3 primitive edge vectors u
(A)
i ,

i = 1, 2, 3 (in the coordinates where the generators are (5.5)):

p1 : u
(1)
1 = (0, 1, 0) u

(1)
2 = (−1, 0, 1) u

(1)
3 = (1,−1, 0)

p2 : u
(2)
1 = (1, 0, 0) u

(2)
2 = (0,−1, 1) u

(2)
3 = (−1, 1, 0)

p3 : u
(3)
1 = (1, 0, 0) u

(3)
2 = (0, 1,−1) u

(3)
3 = (−1,−1, 2)

p4 : u
(4)
1 = (0,−1, 2) u

(4)
2 = (−1, 0, 1) u

(4)
3 = (1, 1,−2)

p5 : u
(5)
1 = (−1,−1, 3) u

(5)
2 = (1, 0,−1) u

(5)
3 = (0, 1,−1)

p6 : u
(6)
1 = (−1, 0, 2) u

(6)
2 = (1, 1,−2) u

(6)
3 = (0,−1, 1)

p7 : u
(7)
1 = (0, 1, 0) u

(7)
2 = (−1,−1, 2) u

(7)
3 = (1, 0,−1)

(5.25)

Then the character of the PdP4 theory can be computed using the general formula for toric

cones [15]:

CT 3(q) =
∑

pA

3
∏

i=1

1

1 − q u
(A)
i

(5.26)

where again for the vectors q, u, the expression qu stands for: qu1
1 qu2

2 qu3
3 .

We perform the change of coordinates in (5.15) and apply equation (5.26) after trans-

forming vectors in (5.25), that is with the replacement u
(A)
i → Au

(A)
i ; after some simplifi-

cations we get:

CT 3(q) =
q1

(

q2

(

−q2
2q

2
3 − q2q3 + q2 + 1

)

q2
3 + q1

(

q2
2q

2
3 + q2(q3 − 1)q3 − 1

))

(q1 − q3)(q3 − 1)
(

q2
2q3 − 1

) (

q2q3q2
1 −

(

q2
2q

2
3 + 1

)

q1 + q2q3

) (5.27)

The cone of holomorphic functions for the theory T 2 is obtained by projecting the toric

cone C∗ along the direction ~d
′

= (1, 0, 0); therefore the character CT 2(q) for T 2 theories,

q = (q2, q3), is obtained simply by setting q1 = 1 in equation (5.27), this is evident from

the expansions in (5.24). We obtain:

CT 2(q) =
−q2

2q
3
3 − 2q2(q3 − 1)q3 + 1

(q3 − 1)2(q2q3 − 1)
(

q2
2q3 − 1

) (5.28)
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and this is the generating function for figure 4a).

Analogously the character CT 1(q) for the theory T 1, q = q3, is obtained by setting

q1 = 1 and q2 = 1, since now the cone of charges for holomorphic functions is obtained by

projecting the toric C∗ along the plane generated by ~d
′

1 = (1, 0, 0) and ~d
′

2 = (0, 1, 0). We

obtain:

CT 1(q) =
q2
3 + 3q3 + 1

(1 − q3)3
(5.29)

and this is the generating function for figure 4b).

Remarkably in [15] it was shown that the volume of a Sasaki metric over the base of

the cone depends only on the Reeb vector b = (b1, . . . br), and can be expressed in terms

of contributions localized on the vanishing locus of the Reeb vector field; comparing their

formula for the volume with that of the equivariant index for the character, the authors

of [15] proved the interesting relation:

V (b) = lim
t→0

tnC(e−tb) (5.30)

where in our case n = 3 is the complex dimension of the cone over the Sasaki manifold;

the character is evaluated in q = e−tb defined as qi = e−tbi . The function V (b) is the

normalized volume function for the Sasaki manifold:

V (b) ≡ Vol(b)

Vol(S2n−1)
for n = 3 : V (b) =

Vol(b)

π3
(5.31)

For toric manifolds the limit in (5.30) applied to (5.26) yields:

V (b) =
∑

pA

3
∏

i=1

1

(b, u
(A)
i )

(5.32)

In our examples, performing the limit (5.30) for equations (5.27), (5.28), (5.29) we

obtain:

VT 3(b) =
2b2

2 + 7b3b2 + 5b2
3 − b1(2b2 + 3b3)

(b1 − b3)b3(2b2 + b3)
(

b2
1 − (b2 + b3)2

)

VT 2(b) =
2b2 + 5b3

b2
3(b2 + b3)(2b2 + b3)

VT 1(b) =
5

b3
3

(5.33)

These are the formulas for the normalized volume of a Sasaki metric of Reeb vector b

over the basis of the cones we are considering. Note that VT 2(b) is obtained from VT 3(b)

by setting b1 = 0: in fact q1 = e−tb1 and q1 = 1 to obtain the T 2 theory. In the same way

VT 1(b) is obtained by setting b1 = b2 = 0 in VT 3(b).

We should try to find the position of the Reeb vector corresponding to a Sasaki-

Einstein metric to compute the volume in this case. Indeed the Reeb vector of a Sasaki-

Einstein metric is at the minimum of the functions VT r restricted to a suitable21 affine

21this affine space is identified by the request: Lr∂/∂rΩ = nΩ, with Ω a closed nowhere vanishing (n, 0)

form.
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space of dimension r − 1 [15], and b inside the direct cone (the dual of the image of the

momentum map). For toric cases [14] this is the plane z = 3 in coordinates (5.1); in our

basis (5.33) this plane becomes:22 b2 + b3 = 3. The Z-minimization for the toric case

leads to: ~b = (−0.37908,−0.37908, 3.37908). In non toric theories the affine space where to

perform the volume minimization is not explicitly known; therefore in our examples we will

extract the position of the Reeb vector for Sasaki-Einstein metrics from the gauge theory,

studying the scaling dimensions of mesons.

5.5 Central and R-charges

In all kinds of theories T 1, T 2, T 3 we are considering, the trial R-charges for chiral fields

can be parametrized with the ai, i = 1, . . . 7, associated with vertices of the toric diagram

(figure 3) as in (5.2), but we have to impose more linear constraints on them as the number

of symmetries decreases. In fact condition (4.2) must always be imposed in all cases T 1,

T 2, T 3:

a1 + a2 + a3 + a4 + a5 + a6 + a7 = 2 (5.34)

If the isometry is T 2 we have the further constraint (4.5), which in our case is:

a2 + a3 − a5 − a6 − a7 = 0 (5.35)

and if the isometry is T 1 there are two linear constraints (4.6), which in our example are:

a2 + a3 − a5 − a6 − a7 = 0 (5.36)

−a1 − a2 + a4 + a5 − a7 = 0

The trial central charge a can be written as:

a =
9

32
tr R3 =

9

32

[

7 + (a1 + a6 + a7 − 1)3 + (a7 − 1)3 + (a3 + a4 − 1)3 + (a2 − 1)3

+ (a1 + a2 + a3 − 1)3 + (a5 − 1)3 + (a4 + a5 + a6 − 1)3 + (a5 + a6 − 1)3

+ (a4 + a5 − 1)3 + (a2 + a3 − 1)3 + (a1 + a2 − 1)3 + (a1 + a7 − 1)3

+ (a6 + a7 − 1)3 + (a4 − 1)3 + (a3 − 1)3 ] (5.37)

where we have used (5.2) for the chiral fields. Note moreover that the trace of the trial

R-symmetry is zero tr R = 0 in all (non) toric theories built modifying toric theories as in

section 4. The proof is the same as in toric theories [20], since the chiral field content and

relation (4.2) are the same also in the modified non toric theories.

Now we can perform a-maximization [13] and find exact R-charges; the maximization

of (5.37) is performed on an affine space of dimension 6 for our T 3 theory, of dimension 5

22Recall that if vectors in C∗ transform as m → Am, than vectors in the direct cone C, like the Reeb

vector, transform as n → tA−1n, so that the scalar product (n, m) is constant.
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for the T 2 theories and of dimension 4 for the T 1 theories. The results are:23

case T 3 : a2 = a5 ' 0.42698 a3 = a4 ' 0.29777 a7 ' 0.55049

a1 = a6 = 0

case T 2 : a2 = a7 =
2

3
(
√

3 − 1) a3 = a5 =
4

3
(2 −

√
3) a4 =

4√
3
− 2

a1 = a6 = 0

case T 1 : a2 = a3 = a4 = a5 = a7 =
2

5
a1 = a6 = 0

(5.38)

and the values of central charges a for the different theories are:

aT 3 = 1.41805 aT 2 = 6
√

3 − 9 aT 1 =
27

20
(5.39)

Using the values above we can compute the exact R-charges R of mesons and hence

the scaling dimensions ∆ = 3/2R, which can be also expressed through the Reeb vector
~b of a Sasaki-Einstein metrics: ∆ = ~b · ~m. Considering the mesons mapped to generators

~m of the cone of charges for holomorphic functions, we are able to find the Reeb vector

corresponding to a Sasaki-Einstein metric. The results, in the same coordinate system

of (5.33) are:

case T 3 : ~b = (b1, b2, b3) = (−0.37908,−0.37908, 3.37908)

case T 2 : ~b = (b2, b3) = (3 − 2
√

3, 2
√

3)

case T 1 : ~b = b3 = 3

(5.40)

Note that in the toric case the Reeb vector lies in the plane b2 + b3 = 3 as expected and the

result here agrees with that of Z-minimization, as already proved in the general toric case.

The case T 2 is less trivial since we have three generators of the cone of charges: ~m = (0, 1),

~m = (1, 1) and ~m = (2, 1). The three equations ∆ = ~m ·~b in the case T 2 are respectively:

b3 = 2
√

3 b2 + b3 = 3 2b2 + b3 = 6 − 2
√

3 (5.41)

This system in two unknowns is indeed consistent and the solution is in (5.40).

Inserting the values for the Reeb vectors (5.40) into the expressions for the vol-

umes (5.33) we are able to find the normalized volumes of the basis of the CY cones:

VT 3 = 0.176299 VT 2 =
3 + 2

√
3

36
VT 1 =

5

27
(5.42)

Note that our methods allow to compute the volumes also for non complete intersections.

Now it is possible to compare these volumes with the values for the central charge a (5.39);

according to AdS/CFT predictions the following relation must hold:

a =
π3

4Vol
=

1

4V
(5.43)

and it is easy to check that (5.39) match (5.42) in all three cases T 3, T 2 and T 1. A general

proof of this matching for toric theories was given in [20]; in section 8 we will give a simple

proof of (5.43) for the class of non toric theories obtained by modifying toric theories as in

section 4.

23In the toric case the exact R-charges are roots of cubic equations, we give only numerical values.
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Figure 6: The quiver of the generalized conifold of type A2.

6. Generalized conifolds of type Ak

In this section we apply the ideas of section 4 to another non-toric theory already known in

the literature [47, 46], that we will call generalized conifold of type A2. This theory is part

of a big family of N = 1 superconformal quiver gauge theories that are infrared fixed points

of the renormalization group flow induced by deforming ADE N = 2 superconformal field

theories by mass terms for the adjoint chiral fields [47, 46]. We will extend our analysis

also to the generalized conifolds of type Ak.

The generalized conifold of type A2 is the N = 1 superconformal quiver gauge theory

that lives on a stack of N parallel D3-branes at the singular point of a type D4 complex

three-fold [48]:

x3 + y2x = zw (6.1)

The theory has the gauge group SU(N) × SU(N) × SU(N) and six chiral matter fields

A, Ã, B, B̃, C, C̃ that transform under the gauge group as shown in figure 6 [46]. The

superpotential is given by:

W = a2
1 Tr (AÃ)2 + a2

2 Tr (BB̃)2 + a2
3 Tr (CC̃)2 +

2a1a3 Tr AÃC̃C + 2a1a2 Tr BB̃ÃA + 2a2a3 Tr CC̃B̃B (6.2)

where a1, a2, a3 are three independent coupling constants. To reconstruct the geometry

from the field theory we reduce as usual to the abelian case in which the gauge group is

U(1)3 and we define the following gauge invariants:

x1 = AÃ, x2 = BB̃, x3 = CC̃

z = ABC w = ÃB̃C̃
(6.3)

These variables are subject to the constraint:

x1x2x3 = zw (6.4)

and in term of these gauge invariants the superpotential (6.2) can be written as

W = (a1x1 + a2x2 + a3x3)
2 (6.5)
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The F -term equations reduce to the linear constraint: a1x1+a2x2+a3x3 = 0, hence we can

use x1, x2, z, w as the generators of the mesonic chiral ring and equation (6.4) becomes,

after fields rescaling, x1x2(x1 + x2) = zw. This is equivalent to the cone in (6.1) after the

complex variables redefinitions: x1 = (x + iy)/ 3
√

2, x2 = (x− iy)/ 3
√

2. In this way the field

theory reconstructs the geometry along its Higgs branch [46].

This theory is important for our task because it is the gauge theory dual to a non-toric

geometry. If we give arbitrary weights under a C
∗ action to the four embedding variables of

the singularity it is easy to show that equation (6.1) admits only two independent actions.

This imply that the variety is of type T 2. The field theory has indeed only two non-

anomalous U(1) symmetries that are of non-baryonic type [46] and they correspond to the

imaginary part of the C
∗ action; these symmetries can be organized as the R-symmetry

U(1)R and the flavor symmetry U(1)F :

A Ã B B̃ C C̃

U(1)R 1/2 1/2 1/2 1/2 1/2 1/2

U(1)F 1 −1 0 0 0 0

(6.6)

The quiver gauge theory we have just discussed is the smallest one of the infinite family

of generalized conifolds of type Ak−1 [47, 46]. The quivers of these theories can be obtained

from the associated affine Dinkin diagrams of the Ak−1 orbifold singularities by deleting

the arrows of the adjoint chiral superfields: there are k SU(N) gauge groups labeled by a

periodic index i = 1, . . . k and 2k chiral superfields, divided in the two sets Xi, and X̃i.

The chiral field Xi goes from node i to i + 1; instead X̃i goes from node i + 1 to node i.

The quiver in figure 6 corresponds to the case k = 3. In the abelian case the theory has

U(1)k gauge group and we can define the minimal set of gauge invariants:

xi = XiX̃i, z = X1X2 . . . Xk, w = X̃1X̃2 . . . X̃k. (6.7)

These k + 2 mesons satisfy the following relation:

x1x2 . . . xk = zw (6.8)

The superpotential for these theories written in term of the above mesons is:

W =
k

∑

i=1

(aix
2
i + 2bixixi−1) (6.9)

The study of the moduli space for these theories has already been performed in [46]: the F-

term relations following from (6.9) reduce to the k linear relations: bixi−1+aixi+bi+1xi+1 =

0. In order to have a three dimensional cone, we have to impose suitable relations on the

parameters ai, bi (see equation (4.8) in [46]) in the superpotential such that only k − 2 of

the F-term linear relations are independent: we can use them to express x3, . . . xk as linear

functions of x1 and x2. Hence relation (6.8) becomes, using also fields rescaling [46]:

x1x2(x1 + x2)

k−3
∏

j=1

(x1 + αjx2) = zw (6.10)
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Figure 7: The SPP theory: a) dimer configuration b) toric diagram c) quiver diagram.

This equation in term of independent mesons x1, x2, z, w expresses the three-dimensional

cone as a complex submanifold in C
4. The αj in (6.10) cannot be reabsorbed into linear

redefinitions of the variables and hence parametrize the complex structure deformations

that leave the moduli space a cone.

Looking at the C
∗ action on the embedding variables one can show that the vari-

eties (6.10) allow only a (C∗)2 action. The superpotential of the theories (6.9) is a quartic

polynomial in the elementary fields and, using the symmetries of the quiver gauge theory,

we immediately find that the exact R-charges of the chiral superfields are all equal to 1/2.

Hence the results of a-maximization are simple:

a-max: R(Xi) = R(X̃i) =
1

2
a =

9

32

[

k + k(−1

2
)3 + k(−1

2
)3

]

=
27

128
k (6.11)

Interestingly the generalized conifolds of type Ak−1 belong to the class of non toric

theories introduced in section 4. Let us start with the case k = 3; first of all we have to

find a toric theory with a quiver that can be reduced to that of figure 6: we can choose for

instance the well know theory of the SPP, whose toric diagram C is:

(0, 0, 1) (1, 0, 1) (1, 1, 1) (0, 2, 1) (6.12)

The dimer, toric diagram and quiver are drawn in figure 7. There are F = 3 gauge groups,

and E = 7 chiral fields: there are all the fields appearing in the generalized A2 conifold:

A, Ã, B, B̃, C, C̃ plus an adjoint: X11 ≡ X, to which we will have to give mass. In
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the SPP quiver the minimal loops are the mesons in (6.3) plus the adjoint X. The toric

superpotential can be written as:

WT 3 = x1X + x2x3 − x3X − x1x2 (6.13)

The dual cone C∗ has four generators over integer numbers:

(0, 1, 0) (−1, 0, 1) (−1,−1, 2) (1, 0, 0) (6.14)

It is easy to find the Ψ-map for the generating mesons: x1, x2, x3, z, w and X:

meson charge Ψ-map

w a2 + 2a3 + a4 (0, 1, 0)

x1, x3 a3 + a4 + a5 (−1, 0, 1)

z a1 + a4 + 2a5 (−1,−1, 2)

x2,X a1 + a2 (1, 0, 0)

(6.15)

where the ai are associated with vertices of the toric diagram as in figure 7b). From the

above table it is immediate to see that we can choose as linearly independent mesons: x1,

x2, z and w and that the SPP can be expressed in terms of this variables as the surface in C
4:

x2
1x2 = zw, to be compared with the equation for the generalized conifold of type A2 (6.10):

x2
1x2 + x1x

2
2 = zw. To modify the SPP superpotential and recover the generalized conifold

of type A2 we have to introduce the mass term X2, which is mapped to the point of C∗:

(2, 0, 0), as can be deduced from (6.15). We deduce that ~d = (2, 0, 0)− (0, 0, 1) = (2, 0,−1),

and that we can add to the superpotential all mesons that are mapped to the three points

of C∗: (0, 0, 1), (2, 0, 0), (−2, 0, 2), that are all the points of C∗ of the form: ~m0 + k~d. The

resulting modified superpotential is thus:

WT 2 = (x1X + x2x3 + x3X + x1x2) +
(

x2
2 + X2 + x2X

)

+
(

x2
1 + x2

3 + x1x3

)

(6.16)

where in front of each term there is a generic coefficient that we have understood for

simplicity. Integrating out the massive field X, one recovers the same superpotential of the

generalized conifold of type A2 (6.5). Therefore we have shown that this non toric theory

can be obtained by quotienting SPP along ~d = (2, 0,−1).

The character CT 3(q) for the SPP theory can be deduced easily from the general

formula (5.26) [15] and using the following resolution of the SPP singularity:

p1 : u
(1)
1 = (0, 1, 0) u

(1)
2 = (1, 0, 0) u

(1)
3 = (−1,−1, 1)

p2 : u
(2)
1 = (−1, 0, 1) u

(2)
2 = (0,−1, 1) u

(2)
3 = (1, 1,−1)

p3 : u
(3)
1 = (1, 0, 0) u

(3)
2 = (0, 1,−1) u

(3)
3 = (−1,−1, 2)

(6.17)

which is shown in figure 8a). But before computing the character we perform an SL(3, Z)

transformation A that sends ~d → (0, 0, 1); we can choose for instance:

A =







1 1 2

1 0 2

0 0 −1






(6.18)
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Figure 8: a) Resolution of the SPP singularity. b) C∗

T 2 for the generalized conifold of type A2 with

multiplicities of holomorphic functions.

with this change of coordinates the vectors of C∗ (6.14) become respectively:

(1, 0, 0) (1, 1,−1) (2, 3,−2) (1, 1, 0) (6.19)

The cone C∗
T 2 in this new system of coordinates is the projection of C∗ (6.19) on the plane

(x, y), since now ~d = (0, 0, 1); we see therefore that w is mapped to the point (1, 0), z is

mapped to (2, 3) and x1, x2, x3 are mapped to (1, 1). The cone C∗
T 2 for the generalized

conifold of type A2 is drawn in figure 8b).

After applying the matrix A (6.18) to the vectors ui in (6.17) we find the character for

the SPP in the new system of coordinates:24

CT 3(q) =
q3

3 −
(

q1
3 q2

3 q3

)

(1 − q1) (1 − q1 q2) (q1 q2 − q3) (q1
2 q2

3 − q3
2)

(6.20)

and the character for the generalized conifold of type A2 is obtained by inserting q3 = 1 in

CT 3 , in order to count all the points of the toric C∗ that are mapped to the same point in

the plane (x, y):

CT 2(q) =
1 − q1

3 q2
3

(1 − q1) (1 − q1 q2)
2 (1 − q1

2 q2
3)

(6.21)

The function CT 2(q) generates the multiplicities that are reported in figure 8b) and that can

be computed directly in some simple cases in the gauge theory of the generalized conifold

of A2 type, in order to check our hypotheses for counting multiplicities. The multiplicities

of generators have already been checked (x3 is a linear combination of x1 and x2). Consider

for example the point (3, 3) with multiplicity 4 according to figure 8b): with x1, x2, z and

w there are five mesons that can be mapped to (3, 3), they are x3
1, x3

2, x2
1x2, x1x

2
2, zw, but

as we see from (6.4) zw is a linear combination of x2
1x2 and x1x

2
2, so that the multiplicity

is 4.

By performing the limit (5.30) for CT 2(q), or equivalently for CT 3(q) and then setting

b3 = 0, we get the following formula for the normalized volume of the 5d basis endowed

24The character for complete intersections like SPP or the D4 singularity can be also computed with

simple methods directly from the equation. We thank A. Hanany for an interesting discussion on this point
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Figure 9: The C3/Z3 theory: a) dimer configuration b) toric diagram c) quiver diagram.

with a Sasaki metric with Reeb vector (b1, b2):

VT 2(b1, b2) =
3

b1 (b1 + b2) (2 b1 + 3 b2)
(6.22)

The position of the Reeb vector for a Sasaki-Einstein metric can be computed again

using the gauge theory and the formula ∆ = ~m ·~b: for the generating mesons mapped to

the points (1, 0), (1, 1), and (2, 3) in figure 8b) we get the three equations:

b1 =
9

4
b1 + b2 =

3

2
2b1 + 3b2 =

9

4
(6.23)

that have the consistent solution: (b1, b2) = (9/4,−3/4); this is a non trivial check that

scaling dimensions of mesons depend only on their charge and on the Reeb vector. Inserting

this value for the Reeb vector into (6.22) we get for the normalized volume V = 32/81, that

matches the value a = 81/128 from a-maximization (6.11) according to the predictions of

AdS/CFT (5.43).

We can repeat this analysis for the whole family of generalized conifolds of type Ak−1:

they are obtained by modifying the toric theories with geometry the quotient C
3/Zk. The

toric diagram C of C
3/Zk is:

(0, 0, 1) (1, 0, 1) (0, k, 1) (6.24)

and its dual C∗ is generated over the integers by the vectors:

(0, 1, 0) (−k,−1, k) (1, 0, 0) (−1, 0, 1) (6.25)
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The gauge theory has a dimer made up of F = k gauge groups, V = 2k superpotential

terms and E = 3k chiral fields. The faces are all hexagons aligned in a single column and

with the identifications as in figure 9a). Up to the adjoint fields the quiver is the same as

for the generalized conifolds of type Ak−1: among the 3k fields there are k Xi and k X̃i,

like for the generalized conifolds, and the remaining fields are the adjoints Yii, to which we

will have to give mass. We draw in figure 9 the dimer, toric diagram and quiver in the case

k = 3: modifying this theory we will get again the generalized conifold of type A2.

The minimal set of gauge invariants for the theory C
3/Zk consists of z, w, xi, i =

1, . . . k, defined in (6.7) plus the k adjoints Yii. It is easy to see that the Ψ-map for the

toric theory is

w → (0, 1, 0) z → (−k,−1, k)

Y11, . . . Ykk → (1, 0, 0) x1, . . . xk → (−1, 0, 1)
(6.26)

¿From this Ψ-map it is easy to see that the singularity is defined by the equation: zw = xk
1

in the four variables: z, w, x1, Y11.

The superpotential for the original toric theory is:

WT 3 =
k

∑

i=1

Yiixi − Yiixi−1 (6.27)

where the index i is periodic with period k. The massive terms Y 2
ii are mesons mapped

to (2, 0, 0), as it is obvious from (6.26), and again the quotient is with respect to ~d =

(2, 0, 0) − (0, 0, 1) = (2, 0,−1). We have to add to the superpotential (6.27) all mesons

mapped to points: (0, 0, 1), (2, 0, 0), (−2, 0, 2). We find the superpotential:

WT 2 =

(

k
∑

i=1

Yii

)





k
∑

j=1

xj



 +

(

k
∑

i=1

Y 2
ii

)

+

(

k
∑

i=1

x2
i

)

(6.28)

where again we have understood generic coefficients in front of every term. Integrating out

the massive fields Yii one recovers the superpotential of the generalized conifolds of type

Ak−1 (6.9), again with generic coefficients in front of each term. Therefore we see that the

T 2 theories of generalized conifolds of type Ak−1 are obtained by quotienting the theories

C
3/Zk with respect to: ~d = (2, 0,−1).

We can perform again a change of coordinates using the same matrix A in equa-

tion (6.18), that sends ~d → (0, 0, 1). The vectors of C∗ in (6.25) are sent respectively to

the points:

(1, 0, 0) (k − 1, k,−k) (1, 1, 0) (1, 1,−1) (6.29)

and quotienting with respect to (0, 0, 1) we find that the integer generators of C∗
T 2 are:

w → (1, 0) x1, · · · xk → (1, 1) z → (k − 1, k) (6.30)

Note that the points (1, 0), (k − 1, k) have multiplicities 1, whereas the point (1, 1) has

multiplicity 2, since, as discussed above, there are k−2 independent linear relations between

the mesons x1 . . . xk, in agreement with the fact that there are 2 points in C∗ ((1, 1, 0) and
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(1, 1,−1)) projected to (1, 1). Note that when k = 3 the cone C∗
T 2 is equivalent to that in

figure 8 b).

It is not difficult to resolve the singularity C
3/Zk and find through equation (5.26) [15]

the character CT 3(q); after changing coordinates with the matrix A (6.18) we obtain:

CT 3(q) =
q1q3

(1 − q1q2) (q3 − q1q2)

[

1

1 − q1
+

qk
3

qk
3q1 − qk

1qk
2

]

(6.31)

The character CT 2(q) for the generalized conifold of type Ak−1 is obtained by setting q3 = 1

in the previous formula. Performing the limit (5.30) on CT 2(q), or equivalently on (6.31)

and then setting b3 = 0, we find the normalized volume for the basis of the generalized

conifolds with a Sasaki metric:

VT 2(b1, b3) =
k

b1 (b1 + b2) ((k − 1) b1 + k b2)
(6.32)

which in the case k = 3 is equal to that in (6.22) computed through the SPP.

The equations ∆ = ~m ·~b using the generating vectors in (6.30) are:

b1 =
3

4
k b1 + b2 =

3

2
(k − 1)b1 + k b2 =

3

4
k (6.33)

that allow to find the position of the Reeb vector for a Sasaki-Einstein metric: (b1, b2) =

(3/4 k, 3/2 − 3/4 k). Inserting this value into (6.32) we find for the normalized volume of

the generalized conifold of type Ak−1:

VT 2 =
32

27 k
(6.34)

which again agrees with the results from a-maximization (6.11), according to the AdS/CFT

predictions (5.43). Our formula for the volume (6.34) agrees with the results of refer-

ence [49], which describes an alternative method for computing Vol(H) when the CY cone

C(H) is defined by a single polynomial equation.

7. Other examples

In this section we study the toric theories Y 2,1 and L1,5;2,4 and try to modify them adding to

their superpotential mesons mapped to: ~m0 + k~d in order to obtain theories with isometry

T 2. In particular our purpose is to see on concrete examples whether it is possible to modify

the toric theories keeping the moduli space three-dimensional. Consider for instance the

N = 4 quiver gauge theory: it has three chiral fields and a superpotential with two terms

canceling in the abelianized version of the theory. If we add superpotential terms that are

non zero also when the gauge group is U(1) then we are introducing non trivial F-terms and

hence the dimension of the moduli space is necessarily less than three. A similar situation

happens in the conifold theory T 1,1: there are 4 chiral fields, a superpotential equal to

zero in the abelian case and one D-term (recall that the number of independent D-terms

is equal to the number of gauge groups minus one: the sum of all charges for all gauge

groups is zero). Hence the moduli space is three dimensional, but as soon as one introduces
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superpotential terms and hence non trivial F-terms, the dimension of the moduli space is

reduced.

Therefore we choose here to start from the more complicated toric theories Y 2,1 and

L1,5;2,4, that have more chiral fields and a non zero superpotential also in the abelian

theory. We add superpotential terms as explained in section 4 with all generic coefficients

(we suppose that the coefficients of the toric terms are non zero), and try to see whether

there are suitable choices of these coefficients in the superpotential that allow the existence

of a three-dimensional moduli space.

To do this we can work using the E chiral fields as complex variables: we write the

F-term equations and solve for E − F − 2 chiral fields (supposing at generic points all the

chiral fields different from zero) in function of F +2 chiral fields, where F is the number of

gauge groups. We have to impose that the remaining F-term equations are satisfied: this

gives non trivial constraints on the coefficients in the superpotential. The D-terms (that

are independent from the superpotential) will reduce of F − 1 the dimension of the F + 2

dimensional manifold, leaving a three-dimensional cone. If the conditions on the coefficients

in the superpotential can be satisfied also with non zero coefficients for (some of) the non

toric terms, then we have constructed three-dimensional non toric (T 2) complex cones. An

alternative and equivalent way is to work with mesons, we associate a complex variable to

each of the mesons that generate loops in the quiver; the moduli space in this case can be

expressed as a (typically non complete) intersection in this space of complex variables: since

mesons are gauge invariants, we do not have to take into account D-terms and quotients

with respect to the corresponding charges. There are non linear algebraic relations among

mesons due to their composition in terms of chiral fields, plus linear relations induced by

F-terms and depending on the coefficients appearing in the superpotential. Imposing again

that the resulting locus is three dimensional we obtain the conditions on coefficients in the

superpotential.

Consider now the theory for Y 2,1; we will not give all the details that can be found in

the literature [6]. The toric diagram C for Y 2,1 is generated by the vectors:

A = (0, 0, 1)

B = (1, 0, 1)

C = (0, 2, 1)

D = (−1, 1, 1) (7.1)

The generators of the dual cone C∗ over integer numbers are the nine vectors:

(0, 1, 0) (−2,−1, 2) (1,−1, 2)

(1, 1, 0) (1, 0, 1) (−1, 0, 1)

(−1,−1, 2) (0,−1, 2) (0, 0, 1)

(7.2)

In our analysis we have added to the superpotential mesons mapped to these generators

of C∗, since they are irreducible mesons (they are not the product of smaller loops) and

hence simpler. For some choices of the direction ~d along which to perform the quotient the
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moduli space is a three dimensional T 2 cone; we sum up our results:

~d mesons in superpotential 3d complex cone T 2

(1, 0, 0) (1, 0, 1), (0, 0, 1), (−1, 0, 1) Yes

(−1,−1, 1) (1, 1, 0), (0, 0, 1), (−1,−1, 2) Yes

(0,−1, 1) (0, 1, 0), (0, 0, 1), (0,−1, 2) Yes

(1,−1, 1) (0, 0, 1), (1,−1, 2) No

(−2,−1, 1) (0, 0, 1), (−2,−1, 2) No

(7.3)

We have repeated the analysis for L1,5;2,4 whose toric diagram C is:

(0, 0, 1) (1, 0, 1) (0, 2, 1) (−2, 1, 1) (7.4)

The dual cone C∗ is generated over integers by the vectors:

(0, 1, 0) (−2,−1, 2) (1,−2, 4) (1, 2, 0)

(−1,−1, 2) (−1, 0, 1) (0,−1, 2) (0, 0, 1)

(1,−1, 3) (1, 0, 2) (1, 1, 1)

(7.5)

Again we have added to the superpotentials mesons mapped to these generators of C∗. The

results are:

~d mesons in superpotential 3d complex cone T 2

(0,−1, 1) (0, 1, 0), (0, 0, 1), (0,−1, 2) Yes

(−2,−1, 1) (0, 0, 1), (−2,−1, 2) No

(−1,−1, 1) (0, 0, 1), (−1,−1, 2) Yes

(−1, 0, 0) (0, 0, 1), (−1, 0, 1) Yes

(1,−2, 3) (0, 0, 1), (1,−2, 4) No

(1,−1, 2) (0, 0, 1), (1,−1, 3) Yes

(1, 0, 1) (0, 0, 1), (1, 0, 2) Yes

(1, 1, 0) (0, 0, 1), (1, 1, 1) Yes

(1, 2,−1) (0, 0, 1), (1, 2, 0) Yes

(7.6)

We see therefore that the existence of 3d complex cones (with isometry group T 2)

obtained by modifying toric theories is quite a common feature. Indeed all the vectors
~d considered here along which we performed the quotient satisfy the condition (4.8) for

having finite multiplicities (note that the proof of the equivalence of a-maximization and

volume minimization in the next section relies only on this property25); yet for some of

25We have also checked that all the field theories obtained by quotienting with the vectors ~d considered

here satisfy the unitary bounds and have central charge a ≥ 1/4; the dual geometrical constraints have

been recently considered in [28]. Interestingly the field theory example considered in section (4.3) of the

same work belongs to the general class of deformations considered in this paper: with the notation of our

section 6, take k = 2, that is the toric theory C
3/Z2) and take the quotient with respect to the vector

~d = (p + 1, 0,−1). For p > 1 it is easy to see that the deformed gauge theory does not satisfy the unitary

bound; the matching between the central charge and the volume, computed in a formal way, is satisfied

because of the general mechanism of section 8.
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Figure 10: The toric diagram P where volume minimization for the T 3 theory must be performed.

For T 2 theories volume minimization is performed on a line segment L inside P .

them there is no three dimensional complex cone with reduced isometry T 2. It would be

interesting to understand whether there are conditions on ~d corresponding to the request

of a three dimensional non toric moduli space.

As a final remark we point out that it is not always obvious that the deformation we add

to the toric theory is relevant: in some cases presented in this section the new superpotential

terms have dimension greater than 3 computed at conformal points of the original toric

theory. However recall that we are changing all the coefficients in the superpotential (and

possibly the gauge couplings) so that some operator may become (marginally) relevant.

We have checked on these examples that the central charge a of the deformed theories is

always less than in the original toric theories.

8. a-maximization and volume minimization

In this section we prove that the results of a-maximization and volume minimization match

the predictions of AdS/CFT (5.43) in the general class of theories obtained by modifying

toric theories as explained in section 4. We make a proposal to identify the space where

volume minimization [15] should be performed when the isometry is T 2 (in the case T 1

this locus is reduced to a single point).

Let us start from a toric AdS/CFT correspondence: in our conventions the vertices of

the toric diagram are the points: Vi = (xi, yi, 1) that generate the fan C. As in section 3

we also introduce the sides of the toric diagram: vi ≡ (xi+1, yi+1)− (xi, yi) and the vectors

joining the trial Reeb (x, y) with the vertices: ri ≡ (xi, yi)− (x, y), see figure 10. The Reeb

vector for a Sasaki-Einstein metric ~b = 3(x̄, ȳ, 1) is the minimum of the volume function for

a Sasaki metric V (~b) when ~b lies on the plane z = 3: ~b = 3(x, y, 1), and the trial point (x, y)

lies inside the toric diagram P [14] (the expression for the volume of H in function of (x, y)

is reported also in equation (3.7)). The proof of the equivalence of volume minimization
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and a-maximization [20] lies on the fact that if we parametrize the charges ai as (3.3):

ai → ai(x, y) ≡ 2li
d

∑

j=1

lj

with li ≡
〈vi−1, vi〉

〈ri−1, vi−1〉〈ri, vi〉
(8.1)

then the matching (5.43) is true for every (x, y) inside the toric diagram P [20]:

a(x, y) =
1

4V (x, y)
with a(x, y) ≡ a(a1(x, y), . . . ad(x, y)) (8.2)

where V (x, y) is the normalized volume function V (~b) for a Sasaki metric computed at the

trial Reeb vector: ~b = 3(x, y, 1). Note that parametrization (8.1) automatically satisfies

condition (4.2). Moreover the derivatives of the trial charge a(a1, . . . ad) are zero along the

d−3 baryonic symmetries (4.4) and on the surface ai = ai(x, y) parametrized by (x, y) [20]:

d
∑

i=1

Bi

(

∂a

∂ai

)

|ai→ai(x,y)

= 0 Bi any baryonic symmetry:
d

∑

i=1

Bi
~Vi = 0 (8.3)

Therefore also a-maximization in the d − 1 independent parameters ai is reduced to an

extremization problem in the variables (x, y).

Moreover, as proved in [14, 20], see also section 3, for every (x, y) inside the toric

diagram P we have the following relations:

d
∑

i=1

ai(x, y)~Vi = 2(x, y, 1) ⇒ 3

2

d
∑

i=1

(

~m · ~Vi

)

ai(x, y) = 3(x, y, 1) · ~m (8.4)

where the second equality is an extension of ∆ = ~b · ~m to the whole interior of the polygon

P . ~m is a point in C∗ and as usual represents the charges of a meson under Ψ-map.

Let us now modify the original toric T 3 theory to a T 2 theory by adding superpotential

terms of the form ~m0 +k~d, as in section 4; we will suppose that this gauge theory (for some

suitable choice of coefficients in the superpotential) admits a three-dimensional moduli

space of vacua and that multiplicities of holomorphic functions over this three-dimensional

cone are counted as explained in section 4. The first step is to try to understand a-

maximization: the trial a charge is the same function a(a1, . . . ad) of the toric case but we

have to add the new constraint (4.5) besides the usual condition (4.2). Consider the plane

Q perpendicular to the vector ~d and passing through the origin. The plane containing the

toric diagram P is perpendicular to ~m0 ≡ (0, 0, 1): it is the plane z = 1 in our conventions.

These two planes in R
3 intersect on a line since ~d cannot be proportional to ~m0 ∈ C∗

because of condition (4.8) and in particular the plane Q intersects the polygon P on a

line segment L interior to P , look at figure 10; in fact condition (4.8) is equivalent to the

request that there exist ī, j̄ such that ~d · ~Vī > 0 and ~d · ~Vj̄ < 0. The points (x, y) ∈ L are

characterized by: ~d · (x, y, 1) = 0.

Interestingly if we restrict (x, y) to vary along the line L and use the same parametriza-

tion (8.1) and equation (8.4) we find that the new request (4.5) in the case T 2 is satisfied:

d
∑

i=1

(

~d · ~Vi

)

ai(x, y) = 0 ∀(x, y) ∈ L (8.5)
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a-maximization must be performed on d − 2 independent variables ai; but note that since

L ⊂ P and since, as observed in section 4, the d − 3 baryonic symmetries Bi are the

same for the T 3 and the T 2 (or T 1) theories then equation (8.3) tells us that along L we

have decoupled baryonic symmetries also for the T 2 theory. a-maximization is reduced to

an extremization problem in one variable, as expected since there is now only one flavor

symmetry. We have to maximize the same function a(x, y) of the toric case but along L and

not on the whole interior of P . Note therefore that aT 2 ≤ aT 3 and recall that in our theories

(that have trR = 0 and hopefully a supergravity dual) the central charges a and c are equal.

This is in agreement with the decreasing of a = c along the renormalization group flow:

we have added relevant terms to the T 3 theory and then flown to new superconformal IR

fixed points, corresponding to T 2 theories.

Let us consider now meson charges; after the introduction of the superpotential terms

that break one flavor symmetries, aligned vectors ~m + k~d in the toric C∗ are identified: we

have to project perpendicularly each integer point ~m ∈ C∗ on the plane Q to find the new

cone of charges for the theory T 2. The scaling dimensions of mesons in the T 2 theory can

be computed as usual with the Ψ-map: ∆ = 3/2
∑

i(~m · ~Vi)ai(x̄, ȳ) and we know from the

previous analysis that (x̄, ȳ) lie on L. The formula for the scaling dimensions of mesons

can be extended to the equality, which holds for all (x, y) ∈ L:

3

2

d
∑

i=1

(

~m · ~Vi

)

ai(x, y) = 3(x, y, 1) · ~m ~m ∼ ~m + k~d, (x, y) ∈ L (8.6)

which is the same as (8.4), but we underline that both sides of the equality are invariant

under ~m ∼ ~m + k~d if (x, y) ∈ L, again because of (8.4). All of this tells us that the cone

of charges for holomorphic functions of the T 2 theory is obtained by projecting perpendic-

ularly each integer point ~m in the toric C∗ on the plane Q; we will call π the orthogonal

projection over Q (4.7). The Reeb vector~b lies now on Q and the scalar product in ∆ = ~b· ~m
is the restriction of the scalar product of the toric theory to the plane Q. In our examples we

computed the Reeb vector from a-maximization imposing that for all mesons ∆ = ~b · ~m and

it is evident from this discussion that these equations are always consistent since they admit

the solution ~b = 3(x̄, ȳ, 1), with (x̄, ȳ) ∈ L coming from a-maximization a(x, y) along L.

Let us now try to understand the volume function VT 2(~b) for a Sasaki metric on the

base of the cone, where ~b varies inside Q. Suppose to perform an SL(3, Z) that sends ~d

in, say, (1, 0, 0); this is always possible since ~d is a primitive integer vector. In this frame

the plane Q is the plane (y, z). Under the hypothesis that multiplicities of holomorphic

functions are computed, as explained in section 4, by counting the number of integer points

of C∗ projected to the same point on the plane Q, then the character CT 2(q2, q3) is equal

to CT 3(1, q2, q3). And from equation (5.30) it follows easily:

VT 2(b2, b3) = lim
t→0

t3CT 2(e−tb2 , e−tb3) = lim
t→0

t3CT 3(1, e−tb2 , e−tb3) = VT 3(0, b2, b3) (8.7)

More generally we see that the function VT 2 is simply the volume function of the toric case

VT 3 restricted to the plane Q. 26

26Note that since we have an expression of charges ai in function only of the Reeb vector (8.1) and
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Figure 11: a) Toric diagram for Y 21 with the line L ≡ D E corresponding to the quotient ~d =

(0,−1, 1). b) The cone C∗

T 2 of charges for holomorphic functions. c) The direct cone CT 2 in green,

dual of C∗

T 2 , where the function VT 2 is defined.

It is clear at this point that the matching aT 2 = 1/(4VT 2) always holds with VT 2 equal

to the volume function computed at the Reeb vector ~b coming from a-maximization; more

generally, as a simple restriction of (8.2), the two trial functions aT 2(x, y) and VT 2(x, y)

agree on the whole line segment L:

aT 2(x, y) =
1

4VT 2(x, y)
(x, y) ∈ L (8.8)

It is natural at this point to identify the line L as the locus where to perform volume

minimization [15]. We suggest that this is the case for the class of non toric theories

introduced in section 4.

As an example consider the toric theory Y 21 with C and C∗ generated by vectors in (7.1)

and (7.2) respectively, and consider the T 2 quotient with vector ~d = (0,−1, 1), that admits

a three dimensional cone as a moduli space of vacua, as told in section 7. Line L is the

intersection of the plane Q perpendicular to ~d: −y + z = 0, with the plane of the toric

diagram: z = 1, and hence is the line segment with z = 1, y = 1 with extremal points

D = (−1, 1, 1) and E = (1/2, 1, 1); it is drawn in figure 11a). We can apply the SL(3, Z)

transformation S = ((1, 0, 0), (0, 1, 1), (0, 0, 1)) to the points of C∗; the vector ~d is mapped

to (0, 0, 1). The first four generating vectors in (7.2) that generate C∗ over real numbers

are mapped by S into:

(0, 1, 0) (−2, 1, 2) (1, 1, 2) (1, 1, 0) (8.9)

With these coordinates the cone C∗
T 2 = π(C∗) is obtained by projecting these vectors on

the plane Q = (x, y) (π stands for the orthogonal projection on the plane Q). Hence

C∗
T 2 is generated over real numbers by (−2, 1) and (1, 1) and it is drawn in figure 11b).

because of the AdS/CFT prediction (3.6), one may conjecture that also the volume functions of divisors

for Sasaki, not necessarily Einstein, metrics may be obtained in the T 2 theory by restricting to the plane

Q the volume functions VolΣi
(b) of the original toric theory. Of course this should be the case at least

in the point of volume minimization, according to AdS/CFT. We are grateful to C. P. Herzog for useful

discussions on this point.
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Transforming the points in (7.1) with tS−1 we get:

A = (0, 0, 1)

B = (1, 0, 1)

C = (0, 2,−1)

D = (−1, 1, 0) (8.10)

and the point E in the new coordinates is E = (1/2, 1, 0). In figure 11 we show the

projection of π(C) on the plane Q; it is generated by (1, 0), (−1, 1) over real numbers.

In the same figure we also draw in green the cone over L, that in the intersection C ∩ Q,

generated by vectors (1, 2), (−1, 1): on the interior of this two dimensional cone the function

VT 2 is positive and well defined, and it is convex on the segment L = D E where volume

minimization has to be performed. Interestingly we note that the cone C ∩ Q is just the

dual of C∗
T 2 , and hence we will call it CT 2:27

CT 2 ≡
(

C∗
T 2

)∗ ≡ (π(C∗))∗ = C ∩ Q (8.11)

To see (8.11) suppose that ~n ∈ C ∩Q, then ~n · ~m ≥ 0, for any ~m ∈ C∗. But since ~n belongs

to Q, then ~n · ~m = ~n · (~m + k~d) ≥ 0 and we can choose k to obtain: ~n · π(~m) ≥ 0, hence we

have shown that: C ∩ Q ⊆ CT 2. Conversely if ~n is in CT 2 then it is a vector in Q such that

~n · π(~m) ≥ 0 for any ~m ∈ C∗. But again for vectors ~n ∈ Q we have: ~n · ~m = ~n · π(~m) ≥ 0

for any ~m ∈ C∗, therefore ~n also belongs to C. Hence also CT 2 ⊆ C ∩ Q holds.

We can repeat the same analysis for T 1 theories: there are now two independent

vectors ~d1, ~d2, and two further constraints to be imposed on trial charges ai (4.6). Let

Q1 and Q2 be the planes perpendicular to ~d1 and ~d2 respectively, and L1 and L2 their

intersection with the toric diagram P on the plane z = 1. Then the two constraints (4.6)

are satisfied by ai(x, y) in (8.1) on the point N defined as the intersection of the line

segments L1 and L2. Note that N lies in the interior of the convex polygon P ; in fact the

point N is the intersection of the plane z = 1 with the line R passing through the origin

and perpendicular to the plane generated by ~d1, ~d2. This line R belongs to the direct cone

C ∪ (−C) as explained in section 4. a-maximization must be performed on a space of d− 3

independent ai, and at point N there are just d−3 baryonic directions with zero derivatives

for the trial a function. The Reeb vector is determined in terms of the coordinates of N

as: ~b = 3(xN , yN , 1) and lies on R. The cone for mesonic charges can be obtained as the

projection of the toric C∗ on the line R; we will call Π the orthogonal projection over the

line R (4.9). Equality (8.6) is still true and non ambiguous under ~m ∼ ~m + k~d1 + h~d2 if

(x, y) coincides with N . The volume function VT 1(~b) is a restriction of VT 3(~b) to the line

R. There is no volume minimization to perform; the central charge a and the volume of

a Sasaki-Einstein metric agree (5.43) again as a simple restriction of the identity (8.2) to

the point N .

27note that CT2 ⊆ π(C), but they are generally different, as in the example of figure 11 c).
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A. Review of toric geometry and quiver gauge theory

The correspondence between quiver gauge theories (considering equivalent two theories

that flow to the same IR fixed point) and singularities is complete in the toric case [16 –

18]; we will introduce now the elements of this correspondence that will be used in the

following. Roughly speaking a six dimensional manifold is toric if it has at least U(1)3

isometry. All geometrical information about toric CY cones are encoded in the fan C [22],

in this case a cone in Z
3 defined by d vectors Vi. The Calabi-Yau condition requires that all

vectors Vi lie on a plane. In our conventions the vectors Vi will lie on the plane with third

coordinate z = 1. By ignoring the third coordinate, we can consider the toric diagram, a

convex polygon in the plane with integer vertices, which is just the intersection of the fan

with the plane z = 1. The (p,q) web is the set of vectors perpendicular to the edges of the

toric diagram and with the same length as the corresponding edges. In the toric case the

gauge theory is completely identified by the periodic quiver, a diagram drawn on T 2 (it is

the “lift” of the usual quiver to the torus): nodes represent SU(N) gauge groups, oriented

links represent chiral bifundamental multiplets and faces represent the superpotential: the

trace of the product of chiral fields of a face gives a superpotential term. Equivalently the

gauge theory is described by the dimer configuration, or brane tiling, the dual graph of the

periodic quiver, drawn also on a torus T 2. In the dimer the role of faces and vertices is

exchanged: faces are gauge groups and vertices are superpotential terms. The dimer is a

bipartite graph: it has an equal number of white and black vertices (superpotential terms

with sign + or - respectively) and links connect only vertices of different colors.

By applying Seiberg dualities to a quiver gauge theory we can obtain different quiv-

ers that flow in the IR to the same CFT: to a toric diagram we can associate different

quivers/dimers describing the same physics. It turns out that in the toric case one can

always find phases where all the gauge groups have the same number of colors; these are

called toric phases. Seiberg dualities keep constant the number of gauge groups F , but

may change the number of fields E, and therefore the number of superpotential terms

V = E −F (since the dimer is on a torus we have: V −E + F = 0.). A zig-zag path in the

dimer is a path of links that turn maximally left at a node, maximally right at the next

node, then again maximally left and so on [17]. It was noted that every link of the dimer
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belongs to exactly two different zig-zag paths, oriented in opposite directions. Moreover for

dimers representing consistent theories the zig-zag paths are closed non-intersecting loops.

There is a one to one correspondence between zig-zag paths and legs of the (p, q) web: the

homotopy class in the fundamental group of the torus of every zig-zag path is given by

the integer numbers (p, q) of the corresponding leg in the (p, q) web and this fact was used

in [17] to find a general algorithm to reconstruct the gauge theory from the geometry in

the toric case.

Non anomalous U(1) symmetries play a very important role in the gauge theory. Here

we review how to count and parametrize them and how to compute the charge of a certain

link in the dimer. For smooth horizons H we expect d−1 global non anomalous symmetries,

where d is the number of sides of the toric diagram in the dual theory. We can count these

symmetries from the number of massless vectors in the AdS dual. Since the manifold is

toric, the metric has three U(1) isometries. One of these (generated by the Reeb vector)

corresponds to the R-symmetry while the other two give two global flavor symmetries in

the gauge theory. Other gauge fields in AdS come from the reduction of the RR four form

on the non-trivial three-cycles in the horizon manifold H, and there are d− 3 three-cycles

in homology [9] when H is smooth. On the field theory side, these gauge fields correspond

to baryonic symmetries. Summarizing, the global non anomalous symmetries are:

U(1)d−1 = U(1)2F × U(1)d−3
B (A.1)

If the horizon H is not smooth (that is the toric diagram has integer points lying on the

edges), equation (A.1) is still true with d equal to the perimeter of the toric diagram in

the sense of toric geometry (d = number of vertices of toric diagram + number of integer

points along edges). In this paper we use the fact that these d − 1 global non anomalous

charges can be parametrized by d parameters a1, a2, . . . , ad [20],28 each associated with a

vertex of the toric diagram or a point along an edge, satisfying the constraint:

d
∑

i=1

ai = 0 (A.2)

The d − 3 baryonic charges are those satisfying the further constraints [9]:

d
∑

i=1

aiVi = 0 (A.3)

where Vi are the vectors of the fan: Vi = (xi, yi, 1) with (xi, yi) the coordinates of integer

points along the perimeter of the toric diagram. The R-symmetries are parametrized with

the ai in a similar way of the other non-baryonic global symmetry, but they will satisfy the

different constraint
d

∑

i=1

ai = 2 (A.4)

28The algorithm proposed in [20] to extract the field theory content from the toric diagram is a gen-

eralization of previously known results, see for instance [6, 9, 19], and in particular of the folded quiver

in [7].
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Figure 12: (i) On the left: part of a toric diagram P with the charge distribution (a trial charge ai

for every vertex Vi ) and two vectors vi and vj of the (p, q)-web. (ii) On the right: the corresponding

zig-zag paths and the link with charge ai+1+ai+2+ai+3+ai+4+aj according to the recipe explained

in the main text.

due to the fact that the terms in the superpotential must have R-charges equal to two.

The simplest algorithm to compute the charge of a generic link in the dimer in function

of the parameters ai is probably the one that make use of the zig-zag paths. Consider the

two zig-zag paths to which a link in the dimer belongs. They correspond to two vectors

vi = (pi, qi) and vj = (pj , qj) in the (p, q) web. Then the charge of the link is given by

the sum of the parameters ai+1 + ai+2 . . . + aj between the vectors vi and vj as shown

in figure 12. This rule explains the formula for the multiplicities of fields with a given

charge [20]: since every link in the dimer corresponds to the intersection of two zig-zag

paths, the number of fields with charge ai+1 + ai+2 . . . + aj is equal29 to the number of

intersections between the zig zag paths corresponding to vi and vj , which is just det(vi, vj).

One can show that this parametrization automatically solve the conditions of vanishing

of gauge and superpotential beta functions [20, 21]. The d− 1 independent free quantities

ai parametrize the d − 1 global abelian symmetry of the gauge theory that can mix with

the R-symmetry. The value of ai at the fixed point can be found by using a-maximization.

B. The moduli spaces for (P )dP4 theories

We give here more details about the moduli spaces of the (P )dP4 theories considered in

section 5. As usual for toric theories, the moduli space of the T 3 PdP4 is determined

by the linear relations among the generating vectors of the cone C∗. We associate with

every generator of C∗ in (5.5) a complex coordinate z1, z2, z3, z4, z5 and t and choose a

representative meson among those (F-term equivalent) mapped to the point of C∗:

n4 → (0,−1, 2) → z4 q1 → (−1,−1, 3) → z3 n8 → (0, 1, 0) → z1

m6 → (0, 0, 1) → t n1 → (−1, 0, 2) → z2 n5 → (1, 0, 0) → z5
(B.1)

where for the complex coordinates we have used the same notation as in [36]. The equations

defining the toric manifold are therefore the five quadrics in C
6:

z1 z3 = z2 t z2 z4 = z3 t z3 z5 = z4 t z2 z5 = t2 z1 z4 = t2 (B.2)

29This is true in minimal toric phases (the toric phases with the minimal number of fields ), where the

number of real intersections between two zig-zag paths is equal to the topological number of intersections.
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This is a non complete intersection and it is easy to verify that the moduli space is three-

dimensional.

The moduli spaces in the cases of the theories T 2 and T 1 are more complicated; inter-

estingly they are still defined as a non complete intersection of five quadrics in C
6, with

equations generalizing those in (B.2); see also [27] for the T 1 theory describing dP4. In the

non toric case T 2 there may be also a deformation of the complex structure that leaves the

manifold a cone. We will deal in this appendix with the easier case of the T 2 PdP4, with

the general superpotential:

WT 2 = a (m1+m3+m5+m7)−b (m2+m4+m6+m8)+c n1−dn3+e n5−f n7+g p1 (B.3)

where it is clear that we can rescale the coefficients of the toric terms in this way (if

they are non zero). It is easy to see that there are suitable choices of the coefficients

in (B.3) allowing a three dimensional moduli space: there are 15 fields and 7 gauge groups,

hence 6 independent D-terms (D-terms equations and quotients are independent from the

parameters in the superpotential). Therefore if we want a three dimensional manifold,

F-terms should reduce the dimension of the manifold of 6: we solve some of the F-term

equations with respect to 6 fields (supposing at generic points all chiral fields different

from zero); if we impose that the remaining F-term equations are satisfied with these

substitutions, we get some complicated conditions on the coefficients in (B.3). It is not

difficult to see that these conditions are satisfied with the choice:

e =
b2f

a2 − d f
g =

a b4 − a5 + 2a3d f − a d2f2

b3f
c =

a4 − b4 − a2d f

b2f
(B.4)

Note that there are other branches of solutions that assure a three-dimensional complex

moduli space; in the following we will refer to (B.4). The same conditions could have been

obtained using directly gauge invariant mesons.

To write the moduli space using only algebraic equations we have to consider the

relations among mesons. There are non linear relations following directly from the defini-

tions (5.3) in terms of elementary fields of the 24 generating mesons; hence these relations

do not depend on the superpotential but only on the quiver. In our example these non lin-

ear relations define a complex 9 dimensional submanifold of C
24. A peculiar role is played

by the first 20 mesons in (5.3), that is those mapped to generating vectors of the toric C∗;

the quadratic relations among them are:

m1m4 = n7p1 m1m5 = n4n6 m1m7 = n3n7 m1n1 = m8p1 m1n2 = n7q1

n4p1 = m1q2 m2m3 = n8p2 m2m6 = n3n5 m2m8 = n4n8 m2n1 = n8q2

m2n2 = m7p2 n3p2 = m2q1 m3m5 = n1n5 m3m7 = n2n8 m3n3 = n8q1

m3n4 = m8p2 n1p2 = m3q2 m4m6 = n2n6 m4m8 = n1n7 m4n3 = m7p1

m4n4 = n7q2 n2p1 = m4q1 m5p1 = n6q2 m5p2 = n5q2 m5q1 = m6q2

m6p1 = n6q1 m6p2 = n5q1 n2n3 = m7q1 n1n4 = m8q2 n5p1 = n6p2

(B.5)

There are no cubic independent relations and a single independent quartic equation

among the first 20 mesons in (5.3): m5m6n7n8 = m7m8n5n6.
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Then we have to intersect this 9 dimensional manifold with the linear space following

from F-term relations (5.20), (5.21) and (5.22). Moreover it is easy to see that, once F-

term relations are taken into account, the mesons t1, t2, t3 and t4 are equal to quadratic

polynomials in the first 20 mesons in (5.3), and therefore they can be eliminated. In fact it is

easy to check that also all non linear relations involving the ti do not add other independent

equations to those we will write. Let us consider therefore the first 20 mesons in (5.3): we

can solve the linear constraints (5.20), (5.21) and (5.22) expressing mesons in function of

the 6 mesons: n4, q1, n8, m6, n1, n5. Substituting these linear relations in (B.5), using

conditions (B.4), we see that there remain only 5 linearly independent quadratic equations:

(

a2 − d f
) (

−
(

b4 t z2

)

+ a2
(

a2 − d f
)

t z2 + b3 f
(

t2 − z1 z4

))

− b4 f2 t z5 = 0

((

a2 − d f
) (

b3 f t2 + a2
(

a2 − d f
)

t z2 − a b
(

a2 − d f
)

z1 z3

))

− b4 f2 t z5 = 0

(

b2
(

a2 − d f
)2

t2
)

−
(

a2 − d f
) (

2 b3 f t + a2
(

a2 − d f
)

z2

)

z5 + b4 f2 z5
2 = 0

a b5 d2 f2 z2 z3 − a9 (f t + b z2) z3 + 3 a7 d f (f t + b z2) z3

+a5
(

b5 z2 − 3 d2 f2 (f t + b z2)
)

z3 + a3 d f
(

−2 b5 z2 + d2 f2 (f t + b z2)
)

z3

+a6 b2 f (f t + b z2) z4 − 2 a4 b2 d f2 (f t + b z2) z4

+a2 b2 f2
(

b4 t + d2 f2 t + b d2 f z2

)

z4 − b6 f3 z4 (d t + b z5) = 0

((

a2 − d f
)

t
(

−
(

a4 z3

)

+ b4 z3 + a2 d f z3 + a b2 f z4

))

− b5 f z3 z5 = 0

(B.6)

where we have relabeled the mesons n4, q1, n8, m6, n1, n5 respectively with the complex

variables: z4, z3, z1, t, z2, z5, as in the toric case (B.1). Once linear relations among mesons

are kept into consideration, the quartic relation m5m6n7n8 = m7m8n5n6 can be deduced

from equations (B.6). We see therefore that the moduli space of the T 2 theory is a non

complete intersection in C
6 of these 5 quadrics; it is easy to verify that the dimension of

the complex cone is three.

Indeed not all the parameters appearing in the equations (B.6) are associated with

independent complex deformations: to count how many complex deformations of the non

toric T 2 cone are admitted (that leave the manifold a cone) we have to consider how many

parameters among the (a, b, d, f) can be reabsorbed through generic linear redefinitions

of the complex variables z1, . . . z5, t. It is easy to see that through suitable rescalings of

the z1, . . . z5, t only three parameters can be reabsorbed.30 We also explicitly checked that

the remaining parameter cannot be reabsorbed through generic linear redefinitions of the

complex variables. Hence the non toric T 2 cone (with the choice of relations in (B.4))

admits one complex parameter of deformations.

The case of the (P )dP4 theory with isometry T 1 is analogous to the case T 2 studied in

this appendix, even though the computations are much more longer. We checked that for

suitable values of the coefficients in the superpotential (5.12) the moduli space can still be

30Note that using only rescalings of the chiral fields one can reabsorb only two parameters. Therefore

differently from the toric case here it is not enough to consider only rescalings of the chiral fields.
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expressed as a non complete intersection of 5 quadrics in C
6. As explained in subsection 5.2,

typically we expect no complex deformation for the T 1 cone that leaves it a cone.
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